
INTERLUDE - A FRAMEWORK FOR AUGMENTED MUSIC SCORES

D. Fober C. Daudin Y. Orlarey S. Letz
Grame - Centre National de Création Musicale

{fober,daudin,orlarey,letz}@grame.fr

ABSTRACT

An Augmented Music Score is a graphic space providing
the representation, composition and manipulation of het-
erogeneous music objects (music scores but also images,
text, signals...), both in the graphic and time domains. In
addition, it supports the representation of the music perfor-
mance, considered as a specific sound or gestural instance
of the score. This paper presents the theoretical foundation
of the augmented music score as well as an application -
an augmented score viewer - that implements the proposed
solutions.

1. INTRODUCTION

Music notation has a long history and evolved through ages.
From the ancient neumes to the contemporary music nota-
tion, the western culture is rich of the many ways explored
to represent the music. From symbolic or prescriptive no-
tations to pure graphic representation, the music score has
always been in constant interaction with the creative and
artistic process.

However, although the music representations have ex-
ploded with the advent of computer music [1, 2, 3], the
music score, intended to the performer, didn’t evolved in
proportion to the new music forms. In particular, there is
a significant gap between interactive music and the static
way it is generally notated: a performer has generally a
traditional paper score, plus a computer screen displaying
a rough number or letter to indicate the state of the inter-
action system. At the same time, we can observe the emer-
gence of new needs in terms of music representation.

In the domain of electro-acoustic music, analytic scores
- music scores made a postriori - like the ”Portraits poly-
chromes” 1 , become common tools for the musicologists
but have little support from the existing computer music
software, apart the remarkable approach proposed for years
by the Acousmograph [4, 5].

In the music pedagogy domain and based on a mirror
metaphor, experiments have been made to extend the mu-
sic score in order to provide feedback to students learn-
ing and practising a traditional music instrument [6, 7].

1 http://www.ina-entreprise.com/entreprise/activites/recherches-
musicales/portraits-polychromes.html

Copyright: c©2010 Fober and al. This is an open-access article distributed under

the terms of the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original author and

source are credited.

With this approach, an extended music score has been de-
veloped, supporting various annotations, including perfor-
mance representations based on the audio signal, all in the
context of a dynamic score layout. The limitations of the
system rely mainly on a monophonic score centered ap-
proach and on a static design of the performance represen-
tation, making the system tricky to extend and to reuse.

New technologies allow now for real-time interaction
and processing of musical, sound and gestural informa-
tion. The Interlude project 2 takes place in this domain and
touches upon new digital paradigms for exploration and in-
teraction of expressive movement with music. The present
work on Augmented Music Scores is part of this project and
addresses interaction with symbolic content issues, while
extending and generalizing previous music score extension
approaches [7].

At the heart of the Augmented Music Score are the fol-
lowing main objectives:

• the score extension to arbitrary graphic objects: ac-
tually, we aim to consider arbitrary graphic objects
(music scores but also images, text, signal represen-
tation...) as possible score candidates;

• the expression of relations between graphic and time
space: considering that time is a constant and com-
mon property of all musical objects, we give a time
position and a time dimension to any score compo-
nent, which also implies to make the temporal rela-
tions graphically visible;

• the performance representation, gesture or audio ba-
sed, with the aim to develop a system dynamically
extensible.

None of the existing systems for music representation
includes these kind of features: although generally extended
to support contemporary music, tools like Lilypond [8],
ENP [9], NoteAbility [10] or the Guido Engine [11] pro-
poses a traditional music score approach and are not suited
to dynamic music notation.

Although the organization of the graphic space consis-
tently to the time space [12], or the synchronization of
various medias [13], are among the current concerns, no
formalism has been proposed to express relations between
time and graphic space in a general music context.

Although tools for sound visualizations have been de-
veloped [14, 4], they are based on a fixed set of represen-
tations and don’t support dynamic extensions.

2 http://interlude.ircam.fr



Synchronization of heterogeneous medias in the gra-
phic domain raises issues related to non-linearity, non-con-
tinuity, non-bijectivity. Based on previous experience, we
propose to approach the problem using segmentation and
the description of relations between segments - we will
next use the term mappings to refer to these relations.

The representation of the music performance, whether
sound or gestural, is approached with a reverse perspec-
tive: the graphic representation of a signal is viewed as
a graphic signal, i.e. as a composite signal including all
the information for the graphic rendering. This approach,
which abstracts the representation calculation, results in an
opened system, that can be dynamically extended.

We will first describe the theoretical foundations of the
mappings and the context of use in the augmented music
score framework. Next, we will explain how the system
handles the performance signals to build graphic signals.
Finally, an augmented music score viewer is presented and
particularly its control API, which is actually a set of OSC
messages[15].

2. TIME AND GRAPHIC RELATIONS

We talk of time synchronization in the graphic domain to
refer to the graphic representation of the temporal relations
between components of a score. Our previous experience
in this domain [6, 7] led us to approach the question of
these relations by the means of segmentation and the de-
scription of relations between segments. The term map-
pings is used to refer to these relations.

The role of a mapping is to make connections between
the segments of different resources, where a segment is a
contiguous zone of a resource. As previously mentioned,
a resource can be an arbitrary object (music notation, im-
ages, text, signals...). The mappings are typically used to
link graphic positions, music time and audio resources lo-
cations. For example, a mapping between an audio record-
ing and a music score makes the connection between audio
locations (expressed in frames) and the music time (ex-
pressed in quarter note divisions). A mapping between a
music score and its graphic representation makes the con-
nection between music time positions and graphic posi-
tions. Combining these mappings allows to make connec-
tions between all the time based resources.

The next sections describe the theoretical foundation for
the notions of segment, segmentation and mapping. These
foundations are independent of any implementation and of
any resource specific information. They are followed by
concrete use cases, implemented in the framework of the
augmented score viewer.

2.1 Definitions

We will first introduce the notions of time and graphic seg-
ments. Next we will generalize these concrete definitions
to an abstract, generic segment definition.

2.1.1 Time segment

A time segment is defined as an interval i = [t0, t1[ such
as t0 6 t1.

An interval i = [t0, t1[ is said empty when t0 = t1. We
will use � to denote empty intervals.

Intersection of time segments (figure 1) is the largest
interval such as:

∀im, ∀in, im ∩ in := {j | j ∈ im ∧ j ∈ in}

t1t0 t3t1t0

x1x0

y1

y0

t2

a b

a b

Figure 1. From left to right: a time segment and time
segments intersection.

2.1.2 Graphic segment

A graphic segment g is defined as a rectangle given by two
intervals g = (ix, iy) where ix is an interval on the x-axis
and iy , on the y-axis.

A graphic segment g = (ix, iy) is said empty when
ix = � or iy = �

The intersection operation ∩ between graphic segments
(figure 2) is defined such as:

∀g = (ix, iy), ∀g′ = (i′x, i
′
y), g ∩ g′ = (ix ∩ i′x, iy ∩ i′y)

t1t0 t3t1t0

x1x0

y1

y0

t2

a b

a b

Figure 2. From left to right: a graphic segment and graphic
segments intersection.

2.2 Segment generalization

We will extend the definitions above to a general definition
of a n-dimensional segment. A n-dimensional segment is
defined as a set of n intervals sn = {i1, ..., in} where ij is
an interval on the dimension j.

A segment sn is said empty when ∃i ∈ sn | i = �
Intersection between segments is defined as the set of

their intervals intersection:

sn1 ∩ sn2 = (i1 ∩ j1, ..., in ∩ jn) (1)

where sn1 = (i1, ..., in) et sn2 = (j1, ..., jn)

2.3 Resource segmentation

A segment-able resource R is an n dimensions resource
defined by a segment Sn of dimension n.
The segmentation of a resource R is the set of segments
Seg(R) = {sn1 , ...sni } such as:

∀i, j ∈ Seg(R) i ∩ j = � the segments are disjoint
∀i ∈ Seg(R) i ∩ Sn = i segments are included in R



2.4 Mapping

A mapping is a relation between segmentations.
For a mapping M ⊆ Seg(R1) × Seg(R2) we define

two functions:

M+(i) = {i′ ∈ Seg(R2) | (i, i′) ∈M} (2)

that gives the set of segments from R2 associated to the
segment i from R1; and the reverse function:

M−(i′) = {i ∈ Seg(R1) | (i, i′) ∈M} (3)

that gives the set of segments from R1 associated to the
segment i′ from R2.

These functions are defined for a set of segments as the
union of each segment mapping:

M+({i1, ...in}) = {M+(i1)∪M+(i2)...∪M+(in)} (4)

and

M−({i1, ...in}) = {M−(i1)∪M−(i2)...∪M−(in)} (5)

2.5 Mappings composition

Mappings composition is quite straightforward.
For a mapping M1 ⊆ Seg(R1)× Seg(R2)
and a mapping M2 ⊆ Seg(R2)× Seg(R3), then :

M1 ◦M2 ⊆ Seg(R1)× Seg(R3)

2.6 Augmented Score segmentations and mappings

All the resources that are part of an augmented score have a
graphic and a temporal dimension. Thus, they are segment-
able in the graphic and time spaces. Unless specified oth-
erwise, time is referring to music time (i.e. metronomic
time).

In addition, each resource type is segment-able in its
specific space: audio frames linear space for an audio sig-
nal, two dimensional space organized in lines/columns for
text, etc.

type segmentations and mappings required
text graphic↔ text↔ time

score graphic↔ wrapped time↔ time
image graphic↔ pixel↔ time

vectorial graphic graphic↔ vectorial↔ time
signal graphic↔ frame↔ time

Table 1. Segmentations and mappings for each component
type

Table 1 lists the segmentations and mappings used by
the different component types. Mappings are indicated us-
ing arrows (↔). Note that the arrows link segments of dif-
ferent types (the segment qualifier is omitted). Segmen-
tations and mappings in italic are automatically computed
by the system, those in bold have to be provided externally.
This typology could be extended to any kind of resource,
provided that for any new type, a mapping exists to go from
the graphic space to the time space.

Note that an intermediate time segmentation, the wrapped
time, is necessary for music score in order to catch repeated
sections and jumps (to sign, to coda, etc.).

Composition of these mappings is at the basis of the
mechanisms to address and synchronize the components
both in the graphic and time spaces.

2.7 Synchronization examples

Let’s consider two score components A and B with their
corresponding graphic and time segmentations:

Seg(Ag), Seg(At), Seg(Bg), Seg(Bt).
In addition, B has an intermediate segmentation Seg(Bl)
expressed in the resource local space units (e.g. frames for
an audio signal). The mappings

MA ⊆ Seg(Ag)× Seg(At)
and MB ⊆ Seg(Bt)× Seg(Bl)

give the correspondence between graphic and time space
for A and between time and local space for B.

When synchronizing objects and deciding on what po-
sition should be used as base position, we have introduced
a master/slave relation between components: a slave is al-
ways constrained to its master space.

2.7.1 Graphic alignment of time positions

It corresponds typically to the alignment of a cursor on a
score: the cursor indicates a time position but without tem-
poral extension.

Let’s consider that B is A slave and we want to graph-
ically align B to A at a time t. Let s = [t0, t1[ be the A
segment containing the time t. The corresponding graphic
segment is:

M−A (s) = {gi ∈ Seg(Ag) | (g, s) ∈MA}

When M−A (s) contains a single segment, B graphic posi-
tion can be computed by simple linear interpolation i.e.:

(xB , yB) = (gx0 + (gx1 − gx0).δ, gy0)

where gx0 and gx1 are the graphic segment first and last x
coordinates and δ = (t− t0)/(t1 − t0).
yB is arbitrary fixed to gy0 but it is actually controlled

by a synchronization mode (over, above, below).
When s is mapped to several graphic segments, the op-

eration can be repeated for each segment.

2.7.2 Segments graphic alignment

It corresponds typically to the alignment of a performance
representation: the performance curve is made of segments
(e.g. corresponding to notes) and each segment has to be
aligned to the corresponding score location and duration.

The basic principle of segments alignment consists for
each of the master graphic segment, to retrieve the corre-
sponding slave segment expressed in the slave local coor-
dinates and to render this slave segment in the space of
the master graphic segment. Provided that Seg(At) =
Seg(Bt), the operation may be viewed as the mapping
composition

MA ◦MB ⊆ Seg(Ag)× Seg(Bl)



Figure 3 gives an example of different alignments obtained
using different segmentations.

Figure 3. The same car bitmap synchronized to different
time positions. The image is made of a single graphic seg-
ment and has a quarter note duration. It is stretched to the
corresponding score graphic segments.

3. PERFORMANCE REPRESENTATION

Work on the performance representation takes root in pre-
vious experiences about the visualization of music instru-
ment playing, made in a pedagogic context [7]. Our pre-
vious approach was based on a graphic rendering engine,
taking signals and a representation type as input, and pro-
ducing the corresponding image. The static embedding of
the representation types in the rendering engine was one of
the main limitations of the approach, implying to modify
the engine for any new type.

In the context of the augmented score, our ambition was
to develop a dynamically extensible system, avoiding this
limitation. To do that, the graphic representation of a sig-
nal is viewed as a graphic signal, i.e. as a composite signal
including all the information required for its graphic ren-
dering.

The resulting performance representation object is a first
order music score component: it has a date, a duration and
thus can be synchronized to any other component.

3.1 Graphic signals

We define a graphic signal as a composite signal made of:

• a y signal: the graphic y coordinates

• a h signal: the graphic thickness at the y position

• a c signal: the graphic color

To make simple, we assume that the color space addressed
by c has one dimension. Figure 4 gives an example of these
parameters in the graphic space, at a time t.

�

�

��

Figure 4. Graphic signal parameters at a time t.

Now, let’s consider a signal S defined as a time func-
tion:

f(t) : R→ R3 = (y, h, c) | y, h, c ∈ R

then this signal may contain everything to be directly drawn
i.e. without additional computation.

Such a system may also be viewed as an oscilloscope
taking the 3 graphic signal components as input.

3.2 Signals composition

In order to build composite signals to be used as graphic
signals, we have introduced a signals parallelization oper-
ation.

Let’s consider S, the set of signals s : N→ R.
The parallel operation ’/’ is defined as:

s1/s2/.../sn : S→ Sn | si ∈ S (6)

The time function of a parallel signal sn ∈ Sn is the
parallelization of each signal’s time function:

f(t) = (f0(t), f1(t), ...fn(t)) | fi(t) : N→ R (7)

3.3 Parallel signals types

To implement the system, we have defined several parallel
signals types:

• a color signal type, based on the HSBA color model
[hue, saturation, brigthness, transparency]:

c ::=
−−−−−−→
(h, s, b, a) | h, s, b, a ∈ R

• a graphic signal type that includes a y signal, a thick-
ness signal th, followed by the 4 components of the
color signal:

g ::=
−−−−−−−−−−→
(y, th, h, s, b, a) | y, th, h, s, b, a ∈ R

• a parallel graphic signals type to support several
graphic signals in parallel:

gn ::= −→g | g ∈ R6

3.4 Graphic signals examples

In order to validate our model, we will describe several
representation types that were statically implemented with
the previous approach.

3.4.1 Pitch representation

Represents notes pitches on the y-axis using the fundamen-
tal frequency (figure 5).

Figure 5. Pitch representation.

The corresponding graphic signal is expressed as:

g = Sf0 / kt / kc

where Sf0 : fundamental frequency
kt : a constant thickness signal
kc : a constant color signal



Figure 6. Intonation representation.

3.4.2 Intonation representation

Represents the difference between a fundamental frequency
and a reference frequency (figure 6).

The corresponding graphic signal is expressed as:

g = Sf0 − Sfr / kt / kc

where Sf0 : fundamental frequency
Sfr : reference frequency
kt : a constant thickness signal
kc : a constant color signal

3.4.3 Articulations

Makes use of the signal RMS values to control the graphic
thickness (figure 7).

Figure 7. Articulations.

The corresponding graphic signal is expressed as:

g = ky / Srms / kc

where ky : signal y constant
Srms : RMS signal
kc : a constant color signal

3.4.4 Pitch and articulation combined

Makes use of the fundamental frequency and RMS values
to draw articulations shifted by the pitches (figure 8).

Figure 8. Pitch and articulation combined.

The corresponding graphic signal is expressed as:

g = Sf0 / Srms / kc

where Sf0 : fundamental frequency
Srms : RMS signal
kc : a constant color signal

3.4.5 Pitch and harmonics combined

Combines the fundamental frequency to the first harmon-
ics RMS values (figure 9). Each harmonic has a different
color.

We will describe the corresponding graphic signal in
several steps. First, we build the fundamental frequency
graphic as above (see section 3.4.4) :

g0 = Sf0 / Srms0 / kc0

Figure 9. Pitch and harmonics combined.

where Sf0 : fundamental frequency
Srms0 : f0 RMS values
kc0 : a constant color signal

Next we build the graphic for the harmonic 1:

g1 = Sf0 / Srms1 + Srms0 / kc1

Srms1 : harmonic 1 RMS values
kc1 : a constant color signal

Next, the graphic for the harmonic 2:

g2 = Sf0/ Srms2 + Srms1 + Srms0 / kc2

Srms2 : harmonic 2 RMS values
kc2 : a constant color signal

etc.

And we finally combine them into a parallel graphic sig-
nal:

g = g2 / g1 / g0

4. THE AUGMENTED MUSIC SCORE VIEWER

The implementation takes the form of a C++ library - the
Interlude library - as well as an augmented score viewer,
build on top of this library. This viewer has no user inter-
face since it has been primarily designed to be controlled
via OSC messages i.e. using external applications like
Max/MSP or Pure Data.

4.1 Messages general format

An Interlude OSC message is made of an OSC address,
followed by a message string, followed by 0 to n param-
eters. The message string could be viewed as the method
name of the object identified by the OSC address.

The OSC address is a string or a regular expression
matching several objects. The OSC address space includes
predefined static nodes:

/ITL corresponds to the Interlude viewer application
/ITL/scene corresponds to the rendering scene, actu-

ally the augmented score address.
The score components have addresses of the form:

/ITL/scene/anyname where anyname is an arbitrary
user defined name.

The score components parameters can be addressed with
messages strings like x, y or z to control the x, y or z posi-
tion. Table 2 gives the main message strings, supported by
all the components. Almost these messages have a relative
form e.g. dx for a relative x displacement.

The next sections present examples of OSC messages
setting up a score including synchronized components. Note
that the messages list corresponds strictly to the file for-
mat of a score. Note also that these examples are static



message strings component parameters
x, y, z, scale, angle scale and position
date, duration, clock time management

color, hsb color management

Table 2. The main messages, supported by all the score
components.

while real-time interaction is always possible, for example
to move objects in time by sending date or clock mes-
sages (similar to MIDI clocks).

4.2 A simple cursor example
This example shows a cursor synchronized to a graphic
bitmap. Lines beginning with a ’#’ are comments inter-
leaved with the messages.

# creates the score as an image
/ITL/scene/turenas set img "score.png"
# sets the image graphic to time mapping
/ITL/scene/turenas mapf "turenas.map"
# sets the score title and position
/ITL/scene/title set txt "Turenas - John..."
/ITL/scene/title x -0.36
/ITL/scene/title y -0.86
/ITL/scene/title scale 3.0
# creates a rectangle used as cursor
/ITL/scene/cursor set rect 0.004 0.217176
/ITL/scene/cursor z 0.5
/ITL/scene/cursor color 204 0 48 132
# synchronizes the cursor to the score
/ITL/scene/sync cursor turenas v
# moves the cursor in time
/ITL/scene/cursor date 123 4

The mapping file turenas.map describes the relation betwwen
the image segments and the time. The image is segmented in 3
parts corresponding to each lines. For each line, the first segment
applies to the graphic space (expressed in pixels intervals) and
the second segment to the time space (expressed as rationals).

( [27,780[ [15,193[ ) ( [0/4,225/4[ )
( [27,782[ [216,394[ ) ( [225/4,520/4[ )
( [27,511[ [417,594[ ) ( [520/4,594/4[ )

The result is given by the figure 10. The cursor is located to
the image position corresponding to its date.

4.3 Nested synchronization example

This example uses 3 components; the first one is master of the
second, which is master of the third one.

# creates a score using an image
/ITL/scene/score set img "score.jpg"
# sets the score graphic to time mapping
/ITL/scene/score mapf "score.map"

# creates a text using a text file
/ITL/scene/text set txtf "comment.txt"
# changes the text scale
/ITL/scene/text scale 3.0
# and the text color
/ITL/scene/text color 0 0 240 255
# put the text in front
/ITL/scene/text z 0.5
# and sets the text to time mapping
/ITL/scene/text mapf "comment.map"

# creates a ball as vectorial graphic
/ITL/scene/ball set ellipse 0.2 0.2
# puts it in front
/ITL/scene/ball z 0.4
# changes the ball color
/ITL/scene/ball color 250 50 0 255

# sets all the objects date
/ITL/scene/* date 4 1
# sets the text slave of the score
/ITL/scene/sync text score
# sets the ball slave of the text
/ITL/scene/sync ball text

Note the use of a wildcard in the OSC address to set all the
objects date with a single message. The corresponding result is
given by figure 11.

4.4 A signal synchronized to a score

This example show a graphic signal synchronized to a GMN score.
Note that a graphic signal is a first order music score component:
it has a date and a duration and can be synchronized to any other
object.

# declare a y signal with size 200
/ITL/scene/signal/y size 200
# declare a thickness signal
/ITL/scene/signal/t size 200
# combines y and t + constant color signals
/ITL/scene/signal/sig set y t 0. 1. 1. 1.
# build the corresponding graphic signal
/ITL/scene/myGraph set graph sig
# set its date and duration
/ITL/scene/myGraph date 7 4
/ITL/scene/myGraph duration 2 4
# creates the score
/ITL/scene/score set gmnf "score.gmn"
# synchronize the graphic signal to the score
/ITL/scene/sync myGraph score h

The corresponding result is given by figure 12. The signal can
move and receive data in real-time. Note that the score graphic to
time mapping is automatically computed by the system.

5. CONCLUSION

Our approach for synchronizing arbitrary objects in the graphic
space according to their time relations, combines the advantages
of simplicity and flexibility: a great variety of behaviors may be
obtained depending on the defined segmentations and mappings.
This method is independent of any implementation.

The proposed solution to include the performance represen-
tation into the music score is also characterized by its simplicity
and flexibility. It consists in abstracting the representation com-
putation from the rendering engine, which results in an opened
and dynamically extensible system.

The resulting augmented music score supports heterogeneous
components and proposes an original music notation approach,
opening new spaces to music and performance representation.

There are many potential application domains, including ped-
agogic applications, games,... But we also hope that new music
forms like interactive music, will take advantage of this research
and its developments.

The Interlude Augmented Music Score framework is an open
source project. The viewer is available from the Interlude web
site at http://interlude.ircam.fr.

Acknowledgments
The Interlude project is funded by the Agence Nationale pour la
Recherche [ANR-08-CORD-010].



Figure 10. Turenas score: analysis and graphic transcription by Laurent Pottier. The transcription is taken from the
INA-GRM ”Portraits polychromes” and reimplemented using the augmented score framework.

!"#$%&!'()&*+%(+,

%-*.)#"*'/0('"*&

(""111

Figure 11. A score with nested synchronization. It includes a bitmap, text and a vectorial graphic. The text is synchronized
to the bitmap and the circle to the text. When receiving time messages (e.g. clock), each object moves relatively to its
master.

Figure 12. A graphic signal synchronized to a GMN score. The signal can move and receive data in real-time.



6. REFERENCES

[1] R. B. Dannenberg, “Music representation issues, techniques
and systems,” Computer Music Journal, vol. 17, no. 3,
pp. 20–30, 1993.

[2] E. Selfridge-Field, ed., Beyond MIDI: the handbook of musi-
cal codes. MIT Press, 1997.

[3] W. B. Hewlett and E. Selfridge-Field, eds., The Virtual Score;
representation, retrieval and restoration. Computing in Mu-
sicology, MIT Press, 2001.

[4] Y. Geslin and A. Lefevre, “Sound and musical representation:
the acousmographe software,” in ICMC’04: Proceedings of
the International Computer Music Conference, pp. 285–289,
ICMA, 2004.

[5] O. Koechlin and H. Vinet, “The acousmographe, a macin-
stosh software for the graphical representation of sounds,”
in Proceedings of the International Computer Music Confer-
ence (ICMC’91), pp. 586–588, ICMA, 1991.

[6] D. Fober, S. Letz, Y. Orlarey, A. Askenfeld, K. F. Hansen,
and E. Schoonderwaldt, “Imutus - an interactive music tuition
system,” in Proceedings of the first Sound and Music Comput-
ing conference - SMC’04, pp. 97–103, IRCAM, 2004.

[7] D. Fober, S. Letz, and Y. Orlarey, “Vemus - feedback and
groupware technologies for music instrument learning,” in
Proceedings of the 4th Sound and Music Computing Confer-
ence SMC’07 - Lefkada, Greece, pp. 117–123, 2007.

[8] H.-W. Nienhuys and J. Nieuwenhuizen, “LilyPond, a system
for automated music engraving,” in Proceedings of the XIV
Colloquium on Musical Informatics, 2003.

[9] M. Kuuskankare and M. Laurson, “Expressive notation pack-
age,” Computer Music Journal, vol. 30, no. 4, pp. 67–79,
2006.

[10] K. Hamel, “NoteAbility, a comprehensive music notation
system.,” in Proceedings of the International Computer Mu-
sic Conference., pp. 506–509, 1998.

[11] D. Fober, S.Letz, and Y.Orlarey, “Open source tools for mu-
sic representation and notation,” in Proceedings of the first
Sound and Music Computing conference - SMC’04, pp. 91–
95, IRCAM, 2004.

[12] J. Bresson and C. Agon, “Scores, programs, and time repre-
sentation: The sheet object in openmusic,” Computer Music
Journal, vol. 32, no. 4, pp. 31–47, 2008.

[13] D. Baggi and G. Haus, “IEEE 1599: Music encoding and
interaction,” COMPUTER, vol. 42, pp. 84–87, March 2009.

[14] C. Cannam, C. Landone, M. Sandler, and J. P. Bello, “The
sonic visualiser: A visualisation platform for semantic de-
scriptors from musical signals,” in Proceedings of the 7th
International Conference on Music Information Retrieval,
2006.

[15] M. Wright, Open Sound Control 1.0 Specification, 2002.


	 1. Introduction
	 2. Time and graphic relations
	2.1 Definitions
	2.1.1 Time segment
	2.1.2 Graphic segment

	2.2 Segment generalization
	2.3 Resource segmentation
	2.4 Mapping
	2.5 Mappings composition
	2.6 Augmented Score segmentations and mappings
	2.7 Synchronization examples
	2.7.1 Graphic alignment of time positions
	2.7.2 Segments graphic alignment


	 3. Performance representation
	3.1 Graphic signals
	3.2 Signals composition
	3.3 Parallel signals types
	3.4 Graphic signals examples
	3.4.1 Pitch representation
	3.4.2 Intonation representation
	3.4.3 Articulations
	3.4.4 Pitch and articulation combined
	3.4.5 Pitch and harmonics combined


	 4. The Augmented Music Score viewer
	4.1 Messages general format
	4.2 A simple cursor example
	4.3 Nested synchronization example
	4.4 A signal synchronized to a score

	 5. Conclusion
	 6. References

