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Abstract

We present a general theoretical framework to de-

scribe segments and the different possible mapping

that can be established between them. Each seg-

ment can be related to different music representa-

tions, graphical scores, music signals or gesture sig-

nals. This theoretical formalism is general and is

compatible with large number of problems found in

sound and gesture computing. We describe some ex-

amples we developed in interactive score representa-

tion, superposed with signal representation, and the

description of synchronization between gesture and

sound signals.

1 Introduction

The explicit or implicit use of segments is necessary

for the description of music. For example, elements

such as notes, bars, sections can be considered as time

segments. Beyond these obvious examples, symbolic

and signal representations of music, including sound

and gestures elements, do imply a large variety of seg-

mental representations. Generally, the different ap-

plications, from musical notation to interactive sys-

tem programing, make use of their own ad-hoc for-

malisms. We argue here that a general formalism

would facilitate the integration of different segmental

approaches for both symbolic and signal music repre-

sentations. This should foster merging different com-

puter music applications (or the communication be-

tween them), especially considering interactive sound

systems dealing with graphical representations.

Music representation is fundamentally not linear with

respect to the time representation. The possible rela-

tionships between the ”dynamic time” of the perfor-

mance and the time of the score can be complex, be-

ing potentially non-continuous and non-bijective. In

music notation, repeat bars, jumps to segno or coda

are some examples taken from the traditional western

music notation, illustrating such a complexity. The

dynamic structure of jazz music poses similar issues,

making automatic accompaniment a non-trivial task

[1, 2].

Music representation, beyond the sole symbolic rep-

resentation, should also include signal representation.

In this regard, the problem of relationship we just

mentioned should be generalized to the relationships

between various classes of elements, symbol and sig-

nal segments.

For example, the classic case of Attack-Decay-

Sustain-Release note representation in sound synthe-

sis makes use of concatenated segments for control,

that are related to sound processes. This could be

generalize to more general gesture modeling in music

performance, which can be segmented in preparation,

stroke and release phases [3]. Formalizing relation-

ships between such gesture and sound segments rep-

resents a current challenge in the design of interactive

systems [4, 5].



This paper proposes a simple but general formalism

to describe time segments in various spaces. Specif-

ically, we propose an explicit description of the rela-

tionships between segments. We will show in particu-

lar how this formalism can be used for a wide range of

applications, and in particular in dynamic graphical

scores and gesture-based interactive systems.

The paper is structured as follows. First, after a pre-

sentation of related works, we describe the general

problematics of time representations we tackle in this

paper. Second, we present our general framework for

segments description and segmentation. Third, we

describe a formal description of mappings which is the

term we’ll use to refer to relations between segments,

and fourth, how these mappings can be extended to

continuous mappings using simple and intuitive op-

erations. Fifth, we describe more advanced concepts

of segments relationships, called refinement. All the

formal descriptions are accompanied by concrete ex-

amples of applications.

2 Related Works

Let consider first the case of music notation. Music

scores could be viewed as time representation: for

most of the music representations, there is a more

or less complex relationship between the graphical

space of the notation and the performance time. Such

relationships between the ”music/performance time”

and the music notation are made explicit in some

applications.

For example, in [6], the authors discussed the rela-

tionship, in graphical space, between time representa-

tion in notation and in music performance. Intended

to enhance music learning using a mirror metaphor,

this work did not attempt to provide for a formal de-

scription of the relationship between time and graphic

spaces, being rather focused on specific required fea-

tures for pedagogical applications.

In [7], the authors described a specific time represen-

tation, used in music composition tools such Open-

Music, to overcome issues arisen when combining dif-

ferent notation aspects with advanced time struc-

tures. An object called ”sheet” is introduced in

OpenMusic, providing a consistent graphical repre-

sentation of different musical objects regarding their

time dimension. This approach makes use of land-

marks to compute ratios between time and space,

that are gathered into a global discrete function x =

f(t). Nevertheless, this system is designed only for

specific objects considering their time systems (e.g.

proportional-time, continuous-time objects). It can-

not be generalized easily being based on a restricted

formalism of time segments.

Representing time relations was partially approached

already in the early 90’ by the HyTime proposal [8],

with the viewpoint of media synchronization but the

HyTime initiative never succeeded [9]. In some way,

the SMIL specification [10] could be viewed as the

successor of HyTime: it is a recommended W3C XML

markup language for describing multimedia presen-

tations. Using SMIL, it is possible to describe the

temporal behavior of a multimedia presentation, to

associate hyperlinks with media objects and to de-

scribe the layout of the presentation on a screen.

Another approach has been proposed with the IEEE

standard IEEE 1599 [11], which targets applications

in which all aspects of music, such as audio and

sound, graphical representation, historical data, per-

formance indications, are fully integrated and syn-

chronized. This standard specifies an XML descrip-

tion of multimedia resources, which are all related

to an abstract time layer. It contains the necessary

information to establish time relationships between

various media using time as the spine of the descrip-

tion. It is strongly anchored in the music domain and

even provides users with a symbolic notational layer.

Hence there are numerous approaches and formats to

describe time relationships of which none succeeded

in being widely supported. But above all, the existing

approaches are mainly descriptive and lack of a for-

mal description of the time relationships that enables

a computational approach.



The recent extension of the music score by [12] led

to a general formalism, covering the needs of media

synchronization beyond the current state of the art.

The synchronization issues are approached using seg-

mentation and relations between segments. Similarly

to previous approaches, time constitutes the spine of

the system but the specification is independent of the

media types and can be easily extended. The formal-

ism we present in the next sections builds on this ear-

lier work, describing a complete formal description of

segment and their relationships.

3 Problematics of time repre-

sentations and their relation-

ships

3.1 Music notation, annotation and

time space.

Apart the purely graphic notations experiments con-

ducted in the second half of the XXth century [13, 14],

a music score generally establishes correspondences

between the graphical space and the time space.

For the sake of simplicity, most music applications

using a score representation associate a single time

position to a graphic position. Nevertheless, even

simple music score might imply a graphical space

of the music notation that is not organized propor-

tionally to time (Fig. 1). For example, associating

a staff to a single time interval generally leads to

rough approximations of the actual relationship be-

tween time and the graphical space. To ensure accu-

racy to such a relationship, a finer segmentation of

the graphical space is necessary, taking into account

every symbol that can be associated to a time dimen-

sion. Another common issue is due to the complex

relationship existing between the notation and the

dynamic time of the performance: this relationship

is non-continuous and non-bijective, due to repeat

bars, jumps (to coda, to segno...). Figure 1 illustrates

the two issues we mentioned: non-proportionality be-

Figure 2: A music score with annotation consisting of

a performance represented as a graphic signal. A sim-

ple stretch of the annotation would not suffice to rep-

resent accurately the relationship between the score

and the annotation.

tween time and the graphical space and non-bijective

relationship between notated and performed time.

Music score annotation (e.g. a score annotated with

textual data, or with a representation of its perfor-

mance) is another case that requires an accurate re-

lationship between time and space. In the case of

static scores (typically printed), the annotation can

be added directly to the graphic space without con-

sidering its precise time location, the choice of the

graphical location being often constrained by read-

ability issue. In the case of dynamic scores (e.g. in-

teractive score), a more formal procedure must be

established to guarantee consistency to changes, by

taking into account a precise time for the annotation

and for the graphical placement of annotation.

Even more complex cases are found when the annota-

tions have also a time dimension (e.g. a signal graphic

representation). Figure 2 shows an example of a mu-

sic score and its performance represented as a graphic

signal: a simple stretch of the performance image over

the score cannot visually convey accurately the de-

tailed time relationships between the score and the

performance.

3.2 Describing time relationships in

graphical space

Beyond standard music scores, there is a need for a

general system that can describe time relationships



Figure 1: A music score illustrating two issues : non-proportionality between time and the graphical space

and non-bijective relationship between notated and performed time (due to repeated bars).

for arbitrary graphical objects. For example, it is

useful to combine symbolic scores and various signal

representations of sound and gesture elements. This

becomes especially important for interactive systems,

where these relationships are dynamic, as their graph-

ical representations. We present below two different

examples taken from actual interactive applications.

First, Figure 3 illustrates an example where temporal

elements such as sound and gesture signal represen-

tations are linked to a symbolic score. The gesture

signal here corresponds to the 3D acceleration of the

hand of a conductor, displayed above the audio wave-

form. This case is taken from an existing pedagogical

system [15] where a teacher or a student control the

pace of an audio recording using ”conducting ges-

tures”, captured with motion sensors. In such an

application, it is vital to be able to visualize the sym-

bolic scores synchronously with the signal representa-

tions, and to be allowed to draw direct links between

them as indicated in Figure 3.

Second, we present here an example taken from a

series of experiments performed on an augmented

quartet, where bow acceleration was measured syn-

chronously with the sound [16]. Figure 4 displays the

score, sound acceleration signals of a particular mu-

sical phrase. Interestingly, in this case the score in-

cludes relatively complex ornamentation, with no ex-

plicit time duration, which also exemplifies the com-

plexity of the time relationships between symbolic

and signals representations.

Figure 4 shows that gesture and sound signals can be

segmented differently. The different forms of the sig-

nals naturally call for different segmentation strate-

gies. First, the gesture signals includes gesture prepa-

ration signals that are segments not present in sound

signals. Second, segments are typically of different

durations for a given element of the symbolic score.

Moreover, this might lead to different elements group-

ing, resulting finally in structurally different segmen-

tations.

The next sections present the formalism that has been

defined to handled the problematic described above.

First, segments and segmentations are formally de-

fined. Then the notion of mapping (i.e. relation-

ship between segmentations) is introduced. Next,

mappings are extended to continuous mapping, which

represents a way to draw relationships inside a seg-

ment. Finally, a refinement operation is defined, that

is used to build relationships between arbitrary seg-

mentations.

4 Segments and segmentations

In this section we define the notions of segment and

segmentation. We will first introduce the notions of

temporal and graphic segments. Next we will gen-

eralize these definitions for any abstract space. Fi-

nally, we introduce the notion of resource segmen-

tation, that is a necessary step to coherently define

segment relationships within our formalism.

4.1 Temporal Segment

A temporal segment is defined as an interval i =

[t0, t1[ such as t0 6 t1. The interval is empty when

t0 = t1 ; we will use the notation � for empty inter-

vals.

The intersection of two temporal segments (figure 5)



&vl

‰
3

! J
œœ˜µ
" 6

gett.

ƒ
Jœ
#

"

f ƒ 3

! Rœ
pizz.

gett.

! ®
œm #
arco

P

œm "

ß
! R

œµ
"
gett.

ß

œm # .œn
"
gett.

ß
!

5

œn ".arco

f

œ. œ. œ. œ.
R
œm # "

ƒ
! ®

..
R
œœnm
"

f

gett.

œµ

col legno batt.

œµ œ œm œ œm œµ
col legno batt.

œµ œm œµ œ˜

&
2

®

U

..
r·œ
#

$ 3

·œ
·œ˜˜ ÿ

tasto spiccato

p
·œµµ
ÿ

·œµ ´
P

·œµµ ´ ·œmm ´
ord.

·œ˜˜ ´ R
·œ

f
! ®·œ.

pizz.

ƒ
Ù

œµ .pizz.

Ù
œm .pizz.

Ù
5

œµ ´spiccato

F
œm ´ œ́ œm ´ œ́

6

œ́ œm ´ œµ ´ œµ ´ œm ´ œµ #

ƒ

œµ "

3

œµ ´ œµ ´ œµ ´
! ‰ Uœ

col legno batt.

œm œµ œµ œm

&
3

3

·œµµ
très détaché 

·œmm ·œnn
p

5

·œmm

p

!

3

·œµ

P

·œmm ·œ
7

® ® ¥œn

F

¥œn ® ¥œmm ¥œnn
3

‰ ..¥œm

f

¥œµ ¥œµµ

P

¥œmm ¥œmm

p
¥œnn

‰ U
¥µ "

p

¥m #

p

¥n " ¥m # ¥µ " ¥m # ¥" ¥" ¥# ¥m " ¥# .¥m " ¥µ # ¥µ " ¥m # ¥m " ¥#

‰

&
4 ..Rœœµn #

flautendo

p
®
L.V

! R
œœnm #
col legno tratto

p

..
R
œœnm

®ƒ Ï

.

.R

œ

œ

m #

p

flautendo

® ‰
,

L.V *

ƒ
.*m

œ

arco

f

œ œ.
pizz. œ

œ
n #

 p sub.

arco
flautendo

.

.R
œ
œ
n

® ®L.V

..
rœœm
#

flautendo

p
!
L.V ® rKœœm

#

flautendop

rœœ ! UL.V

* *

œµ col legno trattoœµ œm œµ œm

&
5

3

‰
œm "

f 3

œm

Ï

écrasé !
œm "

ƒ

» œm #

Ï

écrasé

rœ.

pizz.

jœ
"

ß

stridente
arco

3

œm "

Ï

écrasé œm

F

sonoreœm# " » œ#

Ï

écrasé

jœ Jœ"
stridente

ß
‰ U

&
6

!

3

œ-
marc.

ƒ
œµ - œm -

3

œœnn -

feroce

œœn - œœn -
œœm ->

Ï

rKœ
œn
˜

>

®
5

œœµµ -ƒ œ- œn - œœmm - œm -
œœnn ->

®
3

œœ

"
feroce

œ
œm
n

"

œœnm
"

RÔ
œœn
>

Ï
® ! Œ Œ U‰

&
7

3

œ
# æ
$

œ œm

pont.

œ œ œ R
œ
œ
m

!

3

¥œ

tasto

¥œ ¥œmm

3

·œµµ
@

·œmm ·œœm œm æ œ@
œm
@

jœ
@

jœm
@

¥

@

¥m

@

¥µ ¥m

@
¥

@ ‰
U

&
8

‰ jœœnm
$

ord.

œœ œœ œœ ˙˙
col legno 

jœœ œœ
," "

f

ord.

œœ œœ œœ
U

%

Copyright Baschet  

                              Esquisse n°3

8 familles de modes de jeu distincts correspondants à 8 types de gestes d'archet 

                      test n°3/ modes de jeu/ janvier 2007

                                    POUR VIOLONq = 45 

Florence BASCHET

GETTATO
pizz-col legno

DÉTACHÉ

FLAUTENDO
finger tap
legno tratto

TREMOLOS

battements

ÉCRASÉ
 + ATTAQUES avec 
harmoniques

ricochet

bruiteux

con forza

con forza

SPICCATO
pizz-col legno

legg.

con 

forza
legg.

espressivo

MARCATO

martellato

 BOW TURN
+ col legno

finger taps

+arco batt.

II

III

finger taps

+arco 

fuggievole

énergique

bow turn

1 tour par noire
bow turn

1 tour par noire

2 4 6 8 10 12 14
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time [s]

so
un

d 
[a

.u
.]

so
un
d

2 4 6 8 10 12 14
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time [s]

ac
ce

le
ra

tio
n 

[a
.u

.]
ge
st
ur
e

(a
cc
el
er
at
io
n)

Figure 4: Relationship between different segmentation related to gesture or sound signals. Case of an

augmented violin, where bow acceleration was recorded synchronously with the audio. Excerpt of the

composition Streicherkreis by Florence Baschet

.
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Figure 3: Segments in score, sound and gesture sig-

nal representation. Case of conducting gestures, cap-

tured with 3D accelerometer, used to continuously

control the pace of a recording.

t1t0 t3t1t0 t2

Figure 5: from left to right: a temporal segment and

the intersection of two temporal segments.

x1x0

y1

y0

Figure 6: from left to right: a graphic segment and

the intersection of two graphic segments.

im and in is defined by:

im ∩ in := {j | j ∈ im ∧ j ∈ in}

4.2 Graphic Segment

A graphic segment (2D case) is defined as the product

of two intervals [x0, x1[ et [y0, y1[ :

[x0, x1[×[y0, y1[:= {(u, v)|u ∈ [x0, x1[∧v ∈ [y0, y1[}

where [x0, x1[ is an interval on the abcissa and [y0, y1[,

on the ordinate (figure 6).

A graphic segment g = x × y is empty when x = �
or y = �

The intersection operation ∩ between two graphic

segments gm = xm × ym and gn = xn × yn is de-

fined as :

gm ∩ gn := (xm ∩ xn)× (ym ∩ yn)



4.3 Segment Generalization

More generally, the notions of temporal and graphic

segment can be extended to any dimension n. A

n-dimensional segment s is defined as the cartesian

product of n intervals s = i1 × ...× in. When one of

these intervals is empty, then s is empty.

The intersection of n-dimensional segments is defined

as:

s1 ∩ s2 := (i1 ∩ j1)× ...× (in ∩ jn) (1)

where s1 = i1 × ...× in et s2 = j1 × ...× jn

4.4 Resource Segmentation

By definition, a resource is a non empty n-

dimensional segment. The segmentation of a resource

R, defined on a segment S, is a set of disjoined seg-

ments Seg(R) = {s1, ..., sp} all included in the re-

source:
∀i 1 ≤ i ≤ p s ⊆ S
∀i, j 1 ≤ i ≤ p, 1 ≤ j ≤ p

i 6= j ⇒ si ∩ sj = �
(2)

The segmentation domain is defined as the union of

its segments :

Dom(Seg(R)) =

p⋃
i=1

si

Note that a segmentation is generally partial, it is not

necessary a tessellation of the resource.

5 Mapping

A mapping is a binary relationship between segmen-

tations, defined by a subset M ⊆ Seg(R1)×Seg(R2).

We define the function M+ : Seg(R1) → 2Seg(R2)

that gives the set of segments from R2 associated to

a segment s from R1 :

M+(s) := {s′ ∈ Seg(R2) | (s, s′) ∈M} (3)

performance time

Figure 7: A music score including repeat bars: there

is a non-bijective relationship between the notated

and performance time.

Similarly we define the function M− : Seg(R2) →
2Seg(R1) that gives the set of segments from R1 asso-

ciated to a segment s′ from R2.:

M−(s′) := {s ∈ Seg(R1) | (s, s′) ∈M} (4)

Mappings can catch any musical structure as shown

by the example below.

5.1 Time to time mapping

A time to time mapping catch the overall music struc-

ture of a score and its relationship to the performance

time. Consider the score as illustrated in figure 7,

which includes repeat bars. The relationship between

the score time and the performance time can be de-

scribed by the following relations set (assuming that

the repeat section is played twice) :

( [0/1, 1/2[ ) → ( [0/1, 1/2[ )

( [1/2, 3/2[ ) → ( [1/2, 3/2[ )

( [1/2, 3/2[ ) → ( [3/2, 5/2[ )

( [3/2, 4/2[ ) → ( [5/2, 6/2[ )

where each line associates a score time segment to

a performance time segment. Time intervals are ex-

pressed as rational values denoting music time, where

1 is the whole note.

A time to time mapping is flexible enough to describe

any musical structure, being not constrained to stan-

dard musical segmentation (e.g. measures).



Figure 8: Mappings composition.

5.2 Mappings Composition

Composition of mappings is quite straightforward

(figure 8): using the mappings

M1 ⊆ Seg(R1)× Seg(R2)

and M2 ⊆ Seg(R2)× Seg(R3),

M1∗M2 is the mapping defined on Seg(R1)×Seg(R3)

by:

(s, u) ∈M1 ∗M2 ⇔

∃t ∈ Seg(R2) | (s, t) ∈M1 ∧ (t, u) ∈M2 (5)

Mappings composition allows to draw relationships

between arbitrary segmentations, provided they have

a relationship to a common space (e.g. the time

space). This is illustrated in figure 8, where relation-

ships between two graphic spaces are obtained from

their relationships to the time space.

5.3 Time synchronization in the

graphical space

Mapping compositions can express time relationships

in the graphical space. Let us consider the problem

of a score and the graphical representation of its per-

formance, as previously described. Figure 9 shows

the different graphic segments of a score, annotated

with the corresponding time segments, along with a

graphic signal as a representation of a performance,

also segmented in the graphic and time spaces.

Let Ms ⊆ Seg(Scoreg)×Seg(Scoret) be the mapping

between the score graphic and time segmentations.

[0/1,1/2[

[1/2,2/2[

[1/1,5/4[

[5/4,3/2[

[3/2,2/1[

Figure 9: Graphic segments of a score and its per-

formance displayed using grey levels and annotated

with the corresponding time segments.

[0/1,1/2[

[1/2,2/2[

[1/1,5/4[

[5/4,3/2[

[3/2,2/1[

Figure 10: A score and its performance synchronized

according to their time relationship using mappings

composition.

Let Mp ⊆ Seg(Perft)× Seg(Perfg) be the mapping

between the performance time and graphic segmen-

tationss.

The composition Ms∗Mp is a set of relationships from

the score graphic space to the signal graphic space,

directly expressing the time relationships of the two

objects as illustrated in figure 10.

6 Continuous Mapping

We introduce the notion of continuous mapping, that

expresses relationships that are not explicitly de-

scribed but that can be computed from a given map-

ping. For a relationship (s, g) ∈ M a continuous

mapping describes the relationships of any segment

s′ ⊂ s.

We first introduce the notions of intervals and seg-

ments varieties. Next, we will define congruent va-

rieties, which provide for the ground for continuous

mapping.



6.1 Interval Variety

For θ : [0, 1] → [0, 1] and I = [a, b[, we name variety

of I, the set of points V(I, θ) from I defined by :

V(I, θ) = { (1− θ(t)).a+ θ(t).b | t ∈ [0, 1[ } (6)

Intuitively, the variety of an interval expresses the re-

lationship between this interval and its variety using

a function θ defined on [0, 1[.

6.2 Segment Variety

The variety of a segment generalizes the variety of an

interval to a list of intervals. It is defined as the list

of the varieties of each interval.

Considering a segment S = (i1, ..., in) and Θ : n →
(θ1, ..., θn), the variety V(S,Θ) of S is defined as:

V(S,Θ) = (V(i1, θ1), ...,V(in, θn)) (7)

More generally, we define the variety V(S,Θm) for

m 6= n.
V(S,Θ(m)) = (V(i1, θ1), ...,V(im, θm),

V(im+1, id), ...,V(in, id)), m < n

V(S,Θ(m)) = (V(i1, θ1), ...,V(in, θn)), m > n

(8)

It consists respectively in the extension of the list of

functions θi from the dimension m to n using the

identity function and to the reduction of the list of

functions θi to the dimension n.

Generally, we will note V(S,Θ) to refer to a variety

of S, whatever the dimensions of S and Θ.

6.3 Congruent varieties

Two varieties V(S,Θ) and V(T,Θ′) are said congru-

ent when Θ = Θ′.

We will use the notation V(S,Θ) ≡ V(T,Θ′) to ex-

press congruence.

Intuitively, congruent varieties express the fact that

the segments proportions and position relationships

are equal. It also provides information about the rela-

tions between points enclosed in congruent varieties.

Let’s consider 2 time intervals I = [t1, t2[ and I ′ =

[t′1, t
′
2[ and a relationship between I and I ′. Congru-

ent varieties V(I,Θ) and V(I ′,Θ) express how we go

through I ′ when we go through I since

(1−θ(n)).t1+θ(n).t2 = (1−θ(n)).t′1+θ(n).t′2 | n ∈ [0, 1[

In particular, the relationship between points from I

and I ′ is deduced by linear interpolation when θ = id.

The introduction of a function θ 6= id to go through

a segment corresponds to the typical case of an ac-

celerando, where the acceleration is a not a linear

function of time.

6.4 Continuous Mapping Definition

We can now define the continuous mapping. For any

mapping M ⊆ Seg(R1) × Seg(R2), we associate a

mapping between varieties called continuous mapping

associated to M as follows:

M+
V (V(s, θ)) = {V(s′, θ) | (s, s′) ∈M} (9)

M−V (V(s′, θ)) = {V(s, θ) | (s, s′) ∈M} (10)

In other words: when two segments are in relation-

ship, then their congruent varieties are also in rela-

tionship (figure 11).

7 Segmentations refinement

The mappings composition makes explicit relation-

ships when the resources share the same intermediate

segmentation (for example, identical segmentation of

the time space). In practice, we often have differ-

ent segmentations of identical spaces, which cannot



s

g

V (s,Θ)

V(g, Θ)

V(g, Θ')

V (s,Θ')

Figure 11: According to the relation between the seg-

ments s and g, the continuous mapping expresses re-

lations between included segments using congruent

varieties, denoted by the dotted lines.

? ? ? ?=

Time space

Graphic space

Graphic space

Sg1

St1

St2

Sg2

Figure 12: Different segmentations of the same tem-

poral space preventing the composition of the map-

pings M ⊆ Sg1 × St1 and M ′ ⊆ St2 × Sg2.

be composable (figure 12), although we have the in-

tuition that such relationship could be defined. To

solve this problem, we build a common segmentation

by refinement.

Let’s consider a resource R and two segmentations

S and S′ defined on R, we define the relationship

denoted 4 to express that S′ is finer than S (every

segment of S′ is included in a segment of S) :

S′ 4 S ⇔ ∀s′ ∈ S′ ∃ s ∈ S s′ ⊂ s

This relationship could be viewed as a variety of s:

S′ 4 S ⇔ ∀s′ ∈ S′

∃ (s, θ) ∈ S × [0, 1[[0,1[ s′ = V(s, θ) (11)

Note that two segmentations S1 and S2 defined on

the same resource R have always a common partial

refinement S on their intersection when this intersec-

S2

S1

S

Figure 13: The refinement S of the two segmentations

S1 and S2.

tion is not empty (figure 13) satisfying:Dom(S) = Dom(S1) ∩ Dom(S2)

S 4 S1 ∧ S 4 S2

The refinement common to two segmentations S1 et

S2 may also be expressed as varieties:

S 4 S1 ∧ S 4 S2 ⇔ ∀s ∈ S

∃ (s1, θ) ∈ S1 × [0, 1[[0,1[

∃ (s2, δ) ∈ S2 × [0, 1[[0,1[

s = V(s1, θ) = V(s2, δ) (12)

7.1 Example 1: A sliding window with

a time dimension

A basic use case of continuous mapping and refine-

ment consists in a sliding window with a time di-

mension which could serve analysis or performance

purposes. The window is aligned to a score to in-

dicate the current time position and time extend as

shown in figure 14, where the score time and graphic

segmentations are as illustrated in figure 9. The win-

dow duration is 1/2 (a half note) and its current time

position (3/4) lies in the middle of the time segment

St = [1/2, 1/1[.

The score time segmentation in the window neighbor-

hood is S = {sa = [1/2, 1/1[ sb = [1/1, 5/4[} and

the window time segmentation is C = {[3/4, 5/4[}.
We assume that we have the following time to gaphic

mapping:



score segm.

window segm.
refinementtime domain

graphic domain ga gb

sa sb

Figure 14: A window aligned to a score at date 3/4.

Its duration is 1/2 (a half note). The corresponding

time segments are shown with their refinement.

sa ↔ ga

sb ↔ gb

where ga and gb are gaphic segments.

The segmentation SR = {[3/4, 1/1[ [1/1, 5/4[} is a

refinement of both S and C.

Using a function θ = id (i.e. a linear interpolation),

the continuous mapping tells us that the first half of

the window [3/4, 1/1[ is mapped to the second half

of the score ga graphic segment and the second half

of the window [1/1, 5/4[ is mapped to the gb graphic

segment.

Using mappings and continuous mappings turns out

to be a very convenient way to synchronize any ob-

ject to a score without taking care of the score layout

(e.g. without the need to detect whether there is a

line break in the middle of my objet). Any object

can be expressed in the temporal domain, the map-

ping and continuous mapping taking care of potential

sub-segmentation with every corresponding graphic

segments.

7.2 Example 2: Multiples Segmenta-

tions in Sound and Gesture Signal

Representations

At the beginning of the paper 3.2, we presented an

example where gesture and sounds signals were sep-

arately segmented and linked to the score (Fig. 4).

We can see now how our general formalism can han-

dle such a complex case. First, a comparison be-

tween Figure 4 and Figure 12 reveals clearly that the

segmentation refinement is appropriate to formalize

the different segmentations such as the gestural and

sound segmentation, that operates in the on the same

performance time.

8 Implementation

The mapping formalism has been implemented as a

C++ library. It is part of the INScore open source

project 1 where it provides time synchronization in

the graphic space. The system automatically aligns

and stretches synchronized objects to the correspond-

ing score location using this library, to easily produce

the kind of results illustrated in figure 10. Examples

are given in [12][17].

9 Conclusion

We have proposed a simple formalism to describe re-

lationships between segments. This formalism is gen-

eral since it does not rely in any way on the segments

content and semantic. As such, it has musical appli-

cations in the graphic domain of the score but also

in the gestural or audio domains and allows to create

links that would be otherwise complex to express. It

also includes a formal description of operations that

gives a high flexibility to the way relationships can be

described, including how the inner space of a segment

relates to another segment space.
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