
INScore Time Model

D. Fober Y. Orlarey S. Letz
Grame

Centre nationale de création musicale
Lyon - France

{fober, orlarey, letz}@grame.fr

ABSTRACT

INScore is an environment for augmented interactive music
score design, oriented towards unconventional uses of mu-
sic notation, without excluding conventional approaches.
In this environment, although all the objects of a score have
a temporal dimension, the time remains fixed i.e., the date
(or duration) of an object does not change, except when a
message is received (sent from an external application or
resulting from events handling). Thus, INScore does not in-
clude a time manager in the classic sense of the term. This
choice was based on the fact that the system was originally
designed to be used with sound production software (e.g.,
Max/MSP, Pure Data), that have more strict real-time con-
straints than INScore’s graphical environment. However,
the need to introduce dynamic time has gradually emerged,
leading to an original model, both continuous and event
based. The paper presents this model and its properties in
the frame on INScore.

1. INTRODUCTION

There are numerous non-computer based scores that al-
low the performers to move around the piece in a non-
linear time fashion (e.g. John Cage - Variations series [1],
Boucourechliev - Archipel series [2], Stockhausen - Re-
frain [3],...). This approach to time and musical form had
its golden age from the end of the 1950s. To some extent,
it can be seen as the premises of contemporary interactive
music. It is emblematic of a musical thought that breaks
with the traditional approaches of time and needs to be
taken into account in computer environments for musical
composition. Time manipulations in these environments
can be expressed in very different ways.

In OpenMusic, there are three main types of time ex-
pression: “musical time (i.e., time of symbolic notation,
relative to a tempo), proportional time (expressed in mil-
liseconds), and continuous time (defined by mathematical
functions)” [4].

In other environments such as iScore [5], time is also
event based and can be described in terms of Allen rela-
tions [6], which allows to introduce reactive aspects in the
musical pieces. More recently, these reactive aspects have

Copyright: c©2016 D. Fober Y. Orlarey S. Letz et al. This is an
open-access article distributed under the terms of the Creative Commons
Attribution License 3.0 Unported, which permits unrestricted use, distri-
bution, and reproduction in any medium, provided the original author
and source are credited.

also been introduced in OpenMusic [7], testifying to their
importance in contemporary compositional approaches.

With Antescofo [8], time management approach is a so-
phisticated combination of events, tempo, continuous func-
tions, and allows processes synchronisation as well.

INScore differs from the above environments in that the
system is only dedicated to music score design. Time in
INScore [9] is static: all objects have a date and a dura-
tion expressed in musical time that are fixed by the score
description. The common temporal dimension of all ob-
jects of a score allows to represent their temporal relations
in the graphical space [10]. The animation of time (e.g.,
the modification of the temporal attributes of an object)
occurs when OSC messages are received. These messages
are necessarily transmitted from an external application.

INScore was originally designed to work with sound pro-
duction software (e.g. Max/MSP, Pure Data), that have
strict real-time constraints and offer effective and accurate
time management mechanisms. Nevertheless, the reactive
aspects were quickly taken into account with the introduc-
tion of events, which allow to interact with the musical
score [11]. Initially, the typology of these events includes
classical user interactions events (e.g., mouse events), and
introduces events in the temporal domain (notably time in-
tervals monitoring). This mechanism of events paved the
way for an original approach to music score programming
by allowing to place messages - and thus interactions -
in the temporal space. Nevertheless, as time was always
static, the use of an external application remained neces-
sary to actuate it.

The need for a dynamic representation of time has thus
emerged. It has been solved in a simple way, with the intro-
duction of an additional attribute to the objects of a score:
tempo. This simple addition, however, has an important
impact on the design of time in INScore and on the dy-
namic aspects of the score. We will first present the musi-
cal time model, which is controlled by the tempo. We will
then see how this time combines with event-based time,
and allows to program autonomous dynamic scores. We
will finally show some use cases before concluding and
giving some perspectives for the extension of the temporal
dimensions of the objects of a score.

2. THE MUSICAL TIME MODEL

From the user point of view and for a given object, time
is active when its tempo attribute is non-zero: a non-zero
tempo value moves the object in musical time, according
to its tempo and the flow of absolute time.
We will talk about date to refer to the musical time of an

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

object, and about time to refer to a point in the flow of ab-
solute time.

Let t0 be the time of activation of an object time and v
the value of its tempo, the date dt of the object at a time t
is given by a time function f such that:

f(t)→ dt = dt0 + (t− t0)× v × k, t = t0 (1)

where di is the date of the object at time ti and k a constant
to convert absolute time to musical time. In practice, the
absolute time is expressed in milliseconds and the unit of
musical time is the whole note. Therefore, the value of the
constant k is 1/1000× 60× 4.

Each object of a score has an independent tempo. The
tempo value is signed, meaning that an object can move
in any direction of time (forward or backward). There are
few environments allowing to express this reversal of time
in a simple and natural way, we can quote IanniX [12], a
graphical sequencer inspired by the work of Iannis Xenakis
and that can be viewed as a time writing system.

2.1 Implementation

In INScore, the time granularity is that of the display: the
system runs asynchronously and a periodic time task pro-
cesses the incoming messages and computes the graphical
rendering. In practice, since the effects of time are visible
only in the graphical space, we consider that it isn’t neces-
sary to adopt a finer time resolution.

On the other hand, the frequency of the time task can be
variable:

• by default, it is performed every 10 ms but the user
can freely change this value by sending the rate

message to the application, followed by a value in
milliseconds.

• the time task is not re-entrant and the complexity of
the display can potentially slow it down.

Thus, and at each time task, the system measures the ac-
tual elapsed time. Then, objects whose tempo is non-zero
use this value to compute an offset expressed in musical
time as indicated in (1), then self-send a ddate message
(moving the date in relative mode) with the corresponding
value.

/ITL/scene/obj tempo 60

-> /ITL/scene/obj ddate f(ri)

-> /ITL/scene/obj ddate f(ri+1)

-> /ITL/scene/obj ddate f(ri+2)

-> ...

Figure 1. A sequence of messages activating the time of an object obj.
Messages prefixed by -> are generated by the object itself. ri is the time
elapsed between task i and i− 1.

To be consistent with the overall system, this implemen-
tation is entirely message-based. Thus it is compatible with
all INScore mechanisms, such as the message forwarding
system.

3. THE EVENTS-BASED TIME.

The events-based approach of time in INScore preceded
the musical time model and was first presented in [11]. As
a reminder, the process of event interaction relies on the
association of messages and events of the system. These
messages are sent when the events they are associated with
occur. The general message format for creating such asso-
ciations is described in figure 2.

address watch event messages()

Figure 2. Format of an interaction message : the watchmethod installs
a list of messages associated to the event event.

With the first version presented, the event’s typology was
limited to classical UI events (such as mouse clicks), ex-
tended in the time domain (see table 1).

Graphic domain Time domain
mouseDown timeEnter

mouseUp timeLeave
mouseEnter durEnter
mouseLeave durLeave
mouseMove

Table 1. Main events of the system in its initial version.

This typology has been significantly extended to include:

• any attribute of an object: the modification of an at-
tribute value may generate the corresponding event,
that carries the name of the attribute (e.g., x, y

date, etc. .).

• the intrinsic data of an object, i.e., those defined by a
set message. That’s the newData event, introduced
for the purpose of symbolic scores composition [13].

• arbitrary events defined by the user.

Any event can be triggered by sending an event message
followed by its parameters. Conceptually, this message is
equivalent to calling a parametrized function that generates
OSC messages as output. This logic is particularly consis-
tent for user events, which can take a variable number of
parameters, that are then available to the associated mes-
sages under the form of variables named $1...$n. Figure 3
shows a 2-arguments user event example.

/ITL/scene/obj watch MYEVENT (
/ITL/scene/t1 set txt $1,
/ITL/scene/t2 set txt $2

);
/ITL/scene/obj event MYEVENT

"This text is for t1"
"This one is for t2";

Figure 3. Definition of a user event named MYEVENT expecting 2 pa-
rameters referenced by $1 and $2. This event is then triggered with 2
strings as arguments.

The temporal dimension of this event-based logic allows
to place functions in the time space, under the form of
events activating messages, which can modify the state of
the system and/or be addressed to external applications us-
ing INScore extended OSC addressing scheme. Figure 4
gives an example.

t

d1 d2 d3 d4 d5 d6

Events

/ITL/scene/obj watch

e1 e2 e3 e4 e5 e6

/ITL/scene/obj date d1

Figure 4. Example of events placed in the time space for an object
obj. These events are associated with time intervals (timeEnter and
timeLeave) and are triggered when entering (red) or leaving (blue)
these intervals. The last event (e6), sends a date message that creates
a loop by positioning the object at the beginning of the first interval.

3.1 Implementation

Each object of a score handles relationships between a set
of events E and a set of messages M. The set of events Eo

of an object o is a polymorphic set defined as:

Eo = Ao ∪ Uo ∪ To ∪ T′
o ∪K

where:

- Ao is the set of the object attributes,
- Uo is the set of the object user defined events,
- To and T′

o are respectively the set of time intervals
monitored at input and at output,

- K is the set of UI events (mousexxx, touchxxx).

An event e will be called a trigger when:

∃(e,m) ∈ Eo ×Mo

The messages from m are then sent.
Computation of an event e depends on the event type:

- for a message x addressed to an object o, an event
will be triggered if x ∈ Ao,

- for a message event x addressed to an object o, an
event will be triggered if x ∈ Uo ∪ Ao ∪K,

- for a message date x addressed to an object o that
has the date d, an event will be triggered if:
∃i ∈ To | (x ∈ i ∧ d 6∈ i)

or ∃i ∈ T′
o | (x 6∈ i ∧ d ∈ i),

- events from K are computed by the host system.

4. DYNAMIC MUSICAL SCORES

The combination of musical and event time allows to de-
sign autonomous dynamic scores. In the following exam-
ple, 3 objects o1, o2 and o3 activate each other (Fig-
ure 5) according to the time diagram described in Fig-
ure 10. It makes use of the 2 user events START and STOP,
that are described in Figure 6.

/ITL/scene/o1 watch timeLeave 0 $t2
(/ITL/scene/o2 event START);

/ITL/scene/o1 watch timeLeave 0 $d1
(/ITL/scene/o1 event STOP);

/ITL/scene/o2 watch timeLeave 0 $d2
(/ITL/scene/o2 event STOP,

/ITL/scene/o3 event START);
/ITL/scene/o3 watch timeLeave 0 $d3

(/ITL/scene/o3 event STOP,
/ITL/scene/o1 event START);

Figure 5. Mutual activation of 3 objects o1, o2, o3 according to a
predefined time scheme.

The variables $t1, $d1, $d2 and $d3 are instantiated
with values corresponding to Figure 10. Note that the ob-
ject o3 loops the system by triggering the START event of
the object o1.

/ITL/scene/o* watch STOP (
/ITL/scene/$self tempo 0,
/ITL/scene/$self alpha $alpha

);

/ITL/scene/o* watch START (
/ITL/scene/$self tempo 120,
/ITL/scene/$self alpha 255,
/ITL/scene/$self date 0

);

Figure 6. Definition of the START and STOP user events.

The START and STOP events respectively activate and
deactivate the receiver object time by changing the value
of its tempo and modifying its graphical appearance (alpha
channel) to account for the activation of time. The START

event also sets the date of the object to 0, which allows
looping the system by o3.

t

1

2

3

Objects

Events

t1 t1+d1

t2 t2+d2

t1+d1 t1+d1+d3

Figure 7. Representation of the time activation for 3 objects of the score.
The red color is used for START events, blue for STOP

4.1 Jeu est un autre

Jeu est un autre from Vincent Carinola is a pedagogical
music piece for computer and a variable number of per-
formers, where Max/MSP is used to compute sound pro-
cesses and to activate a dynamic musical score intended to
performers.

/ITL/scene watch P1 (
/ITL/scene/g1 alpha 255,
/ITL/scene event STATION $tempo ’$1’

);

/ITL/scene watch STATION (
/ITL/scene/cursor show 0,
/ITL/scene/cursor watch timeLeave

0 ’$2’ $stop s,
/ITL/scene/cursor date 0,
/ITL/scene/cursor tempo ’$1’

);

stop s = (
set the tempo to 0
/ITL/scene/cursor tempo 0,
remove any watched event
/ITL/scene/cursor watch,
and reset the alpha channel
/ITL/scene/g* alpha $alpha

);

Figure 8. Definition of the event P1 activating the station represented by
the object g1. Note: the use of the variable stop s, which is evaluated
by the parser and allows to share the stop behavior between several events.
The tempo and alpha variables are defined globally.

/ITL/scene watch P5 (
/ITL/scene/a3 duration ’$1’,
/ITL/scene event PATH a3 $tempo ’$1’

);

/ITL/scene watch PATH (
/ITL/scene/cursor show 1,
/ITL/scene/sync cursor ’$1’ syncFrame,
/ITL/scene/cursor watch timeLeave

0 ’$3’ $stop c,
/ITL/scene/cursor date 0,
/ITL/scene/cursor tempo ’$2’

);

stop c = (
/ITL/scene/cursor show 0,
/ITL/scene/cursor tempo 0,
/ITL/scene/cursor watch,
remove the synchronization
/ITL/scene/sync cursor

);

Figure 9. Definition of the event P5 activating the path represented by
the object a3.

The music score (Figure 10) consists of a set of drawings
with labels (sculpture, zebra, pace, texture, turn) connected
by paths. Each drawing (that we will call stations) is asso-
ciated to an instrumental play mode and to specific sound
processes, based on materials prepared by the students. For
example, the path whisper indicates that the passage from
one drawing to another is done by crossing a path inhab-
ited by whispers. You should find here, in the instrumental
and vocal play, something like a story that would be told

very softly, whispering. 1

To some extents, the computer plays the role of the con-
ductor: it computes sound sequences based on pre-recorded
materials and activates paths or stations for variable dura-
tions, dynamically computed. The paths and possible sta-
tions are indicated in the Figure 10 by labels P1 to P13.

The dynamic aspects of the score are defined with user
events that carry the name of the corresponding labels. These
events take a duration as parameter, so that the following
message is enough to activate a path or a station:

/ITL/scene Px d

where Px is the user event name (P1...P13)
and d the corresponding duration.

Thus, it’s a high-level approach allowing to conduct the
score in real time from Max/MSP.

Visually, the score accounts for these events in the graph-
ical space in two ways:

• for stations (events OSC P1 ... P4 and OSC P13):
using the alpha channel of the corresponding draw-
ing to indicate its activation.

• for paths (events OSC P5 ... P12): by moving a
cursor along the path, in the corresponding direction.

Schematically, the implementation of these events relies
on an object named cursor that moves in time at a given
tempo, depending on a time unit fixed by convention.

Activation of a station consists in changing the alpha chan-
nel of the corresponding drawing, activating the cursor time
and instantiating an event for the end of the duration com-
puted by Max/MSP (see Figure 8).

For paths activation, the duration of the corresponding
arc is set to the duration of the event, the cursor is synchro-
nized to that arc in syncframe mode (which consists of
synchronizing an object on the border of another), its time
is activated and an event is instantiated for the end of the
arc duration (see Figure 9).

5. CONCLUSIONS

The temporal approach proposed by INScore provides an
original support to dynamic musical score design. It al-
lows to express arbitrary behaviors in both musical and
event times. However, it remains limited: unlike environ-
ments such as Antescofo for example, events do not have
a temporal dimension, preventing them from being com-
posed with logical operations. It would also be interesting
to extend the temporal dimensions of an object to all its
graphic attributes, so that its displacements in time could
be translated into the graphical space by the variation of its
attributes.

1 Excerpt from the instructions given with the score.

6. REFERENCES

[1] J. Cage, “Variation I-VI,” Henmar Press, New York,
1960-1966.

[2] A. Boucourechliev, Archipel 1. Universal, 1967.

[3] K. Stockhausen, “REFRAIN for 3 players,” Universal
Edition, Vienna, 1959.

Jeu est un autre

sculpture

texture

zébrure

tournure

subito

allure

±

murmure

Vincent-Raphaël Carinola, 2016

P9

P10

P
11

P
12

P5

P6

P
7

P
8

P1 P2

P3

P4

P13

Figure 10. The music score of ”Jeu est un autre” annotated (in red) with the possible ways and stations. The annotations are implemented as INScore’s
user events, they do not appear on the performer score.

[4] J. Bresson and C. Agon, “Scores, Programs, and Time
Representation: The Sheet Object in OpenMusic,”
Computer Music Journal, vol. 32, no. 4, pp. 31–47,
2008.

[5] A. Allombert, M. Desainte-Catherine, and G. As-
sayag, “Iscore: a system for writing interaction,” in
Proceedings of the Third International Conference on
Digital Interactive Media in Entertainment and Arts,
DIMEA 2008, 10-12 September 2008, Athens, Greece,
ser. ACM International Conference Proceeding Series,
S. Tsekeridou, A. D. Cheok, K. Giannakis, and J. Ka-
rigiannis, Eds., vol. 349. ACM, 2008, pp. 360–367.

[6] J. F. Allen, “Maintaining knowledge about temporal
intervals,” Commun. ACM, vol. 26, pp. 832–843,
November 1983. [Online]. Available: http://doi.acm.
org/10.1145/182.358434

[7] J. Bresson and J.-L. Giavitto, “A Reactive Extension
of the OpenMusic Visual Programming Language,”
Journal of Visual Languages and Computing, vol. 25,
no. 4, pp. 363–375, 2014. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-00965747

[8] A. Cont, “ANTESCOFO: Anticipatory Synchroniza-
tion and Control of Interactive Parameters in Computer
Music.” in Proceedings of International Computer Mu-
sic Conference, ICMA, Ed., 2008.

[9] D. Fober, Y. Orlarey, and S. Letz, “INScore – An Envi-
ronment for the Design of Live Music Scores,” in Pro-
ceedings of the Linux Audio Conference – LAC 2012,
2012, pp. 47–54.

[10] D. Fober, C. Daudin, S. Letz, and Y. Orlarey, “Time
Synchronization in Graphic Domain - A new paradigm
for Augmented Music Scores,” in Proceedings of the
International Computer Music Conference, ICMA,
Ed., 2010, pp. 458–461.

[11] D. Fober, S. Letz, Y. Orlarey, and F. Bevilacqua, “Pro-
gramming Interactive Music Scores with INScore,”
in Proceedings of the Sound and Music Computing
conference – SMC’13, 2013, pp. 185–190. [Online].
Available: fober-smc2013-final.pdf

[12] T. Coduys and G. Ferry, “IanniX Aesthetical/Symbolic
Visualisations For Hypermedia Composition,” in Pro-
ceedings of the first Sound and Music Computing Con-
ference SMC’04 - Paris/France. IRCAM, 2004, pp.
p. 105–110.

[13] G. Lepetit-Aimon, D. Fober, Y. Orlarey, and S. Letz,
“INScore expressions to compose symbolic scores,”
in Proceedings of the International Conference on
Technologies for Music Notation and Representation -
TENOR2016, R. Hoadley, C. Nash, and D. Fober, Eds.
Cambridge, UK: Anglia Ruskin University, 2016, pp.
137–143.

http://doi.acm.org/10.1145/182.358434
http://doi.acm.org/10.1145/182.358434
https://hal.archives-ouvertes.fr/hal-00965747
fober-smc2013-final.pdf

	 1. Introduction
	 2. The musical time model
	2.1 Implementation

	 3. The events-based time.
	3.1 Implementation

	 4. Dynamic musical scores
	4.1 Jeu est un autre

	 5. Conclusions
	 6. References

