
FAUSTLIVE
Just-In-Time Faust Compiler... and much more

Sarah DENOUX and Stephane LETZ and Yann ORLAREY and Dominique FOBER
GRAME

11 Cours de Verdun (GENSOUL)
69002 Lyon
FRANCE

{sdenoux, letz, orlarey, fober}@grame.fr

Abstract

FaustLive is a standalone just-in-time Faust
compiler. It tries to bring together the conve-
nience of a standalone interpreted language with
the efficiency of a compiled language. Based
on libfaust, a library that provides a full in-
memory compilation chain, FaustLive doesn’t
require any external tool (compiler, linker, etc.)
to translate Faust source code into binary ex-
ecutable code.

Thanks to this technology, FaustLive pro-
vides several advanced features. For example
it is possible, while a Faust application is run-
ning, to modify its behavior on-the-fly without
any sound interruption. It is also possible to mi-
grate a running application from one machine to
another, etc.

Keywords
Audio, Faust, DSP programming, remote process-
ing and interfacing

1 Introduction

Faust [Functional Audio Stream] [6] is a func-
tional, synchronous, domain-specific program-
ming language specifically designed for real-
time signal processing and synthesis. A unique
feature of Faust, compared to other existing
music languages like Max, PD, Supercollider,
etc., is that programs are not interpreted, but
fully compiled. Faust provides a high-level
alternative to C/C++ to implement efficient
sample-level DSP algorithms.

But, if compilers have the advantage of ef-
ficiency, they have their own drawbacks com-
pared to interpreters. Compilers traditionally
require a whole chain of tools to be installed
(compiler, linker, development libraries, etc.).
For non-programmers this task can be com-
plex. The development cycle, from the edition
of the source code to a running application, is
much longer with a compiler than with an inter-
preter. This can be a problem in creative situ-

ations where quick experimentation is essential.
Moreover, binary code is usually not compatible
across platforms and operating systems.

FaustLive is an attempt to bring together
the convenience of a standalone interpreted lan-
guage with the efficiency of a compiled lan-
guage. Based on libfaust, a library that provides
a full in-memory compilation chain, FaustLive
is a standalone application that doesn’t require
any external tool to translate Faust source code
into binary executable code and run it. In many
aspects FaustLive behaves like a Faust inter-
preter with a very short development cycle (not
very different, in that aspect, from modern com-
piled LISP environments, or from the approach
presented by Albert Graef with Pure in [1]).

Moreover, FaustLive provides some advanced
features to speedup the development cycle. For
example, while a Faust application is running,
it is possible to edit and recompile its Faust
code on-the-fly, without any sound interruption.
If the application is using JACK as driver, all
audio connections are maintained. Another in-
teresting feature is the possibility to migrate a
running application from one machine to an-
other through the network even across operat-
ing systems. Applications can also be controlled
remotely, using HTTP or OSC.

FaustLive offers a lot of flexibility to proto-
type audio applications. It can also be con-
nected to FaustWeb, a remote compilation ser-
vice to export the application as a traditional
binary for one of the various operating system
and audio architecture supported by the Faust
ecosystem.

Since FaustLive is based on libfaust, the
Faust compiler project will first be presented
(see Section 2). Then FaustLive will be shortly
described through a typical use case (see Sec-
tion 3) to finally be detailed over its technical
aspects (see Section 4).



2 Faust Compiler

The Faust compiler translates a Faust pro-
gram into an equivalent imperative program
(typically C, C++, Java, etc.), taking care of
generating efficient code. The Faust package
also includes various architecture files, provid-
ing the glue between the generated code and
the external world (audio drivers and user in-
terfaces).

Figure 1: Steps of Faust compilation chain

The current version of the Faust compiler
produces the resulting DSP code as a C++
class, to be inserted in the architecture file. The
resulting C++ file is finally compiled with a
regular C++ compiler to produce the final exe-
cutable program or plug-in (Figure 1).

The resulting application is structured as
shown in Figure 2. The DSP has become an
audio computation module. As for the archi-
tecture, it turned into links to the user interface
and the audio driver.

Figure 2: Faust application structure

2.1 LLVM

LLVM (formerly Low Level Virtual Machine) is
a compiler infrastructure, designed for compile-
time, link-time, run-time optimization of pro-
grams written in arbitrary programming lan-

guages. Executable code is dynamically pro-
duced using a “Just In Time” compiler from a
specific code representation, called LLVM IR1.
Clang, the “LLVM native” C/C++/Objective-
C compiler is a front-end for LLVM Compiler.
It can, for instance, convert a C or C++ source
file into LLVM IR code (Figure 3).

Figure 3: LLVM compiler structure

Domain-specific languages like Faust can
easily target the LLVM IR. This has been done
by developing a special LLVM IR backend in
the Faust compiler, [5].

2.2 Dynamic compilation chain

The complete chain goes from the DSP source
code, compiled in LLVM IR using the LLVM
backend, to finally produce the executable code
using the LLVM JIT. All steps are done in mem-
ory. Pointers on executable functions can be
retrieved in the resulting LLVM module, and
their code directly called with the appropriate
parameters.

In the faust2 development branch, the Faust
compiler has been packaged as an embeddable
library called libfaust, published with an asso-
ciated API, [2]. This API imitates the concept
of oriented-object languages, like C++. The
step of compilation, usually executed by gcc,
is accessed through the function createDSP-
Factory. Given a Faust source code (as a file
or a string), the compilation chain (Faust
+ LLVM JIT) generates the “prototype” of
the class, called llvm-dsp-factory. Then, the
function createDSPInstance, corresponding to
the “new className” of C++, instantiates
a llvm-dsp. It can then be used as any ob-
ject, run and be controlled through its interface.

Embedding this technology in a program or
a plug-in enables dynamic modifications of the
audio computation module of a Faust applica-
tion [4].

1The Intermediate Representation is an intermediate
SSA representation



3 FaustLive - Use Case

FaustLive is a QT-based2 software that per-
mits to launch Faust applications from their
source code without having to precompile them
(Figure 4).

Figure 4: FaustLive principle

FaustLive exploit dynamic compilation,
associated with multiple interfacing systems
and audio drivers to modulate the structure
of Faust applications and simplify Faust
prototyping process.
To give an idea of FaustLive’s potential, the
following section presents its diversified fea-
tures, showing the corresponding alterations in
the structure of the applications.

The starting point of FaustLive’s features is
drag and drop. A Faust DSP can be opened in
a new window or it can be dropped on a running
Faust application. As a result, an intermedi-
ate state emerges in which the two applications
coexist. The arriving application copies the es-
tablished audio connections. Then, the output
of the old application is cross-faded to the new
one (Figure 5). At last, the dropped application
durably replaces the previous one. With that
system, a running application can be changed
endlessly, without audio click.

This mechanism also allows source edition.
When the user chooses to edit its Faust code,
it is opened in a text editor. And as his changes
are saved, the application is updated using the
crossfade mechanism (Figure 6).

JACK was primitively adopted as audio
driver for it allows the user to connect its

2QT is a framework for interface design

Figure 5: Behavior modification

Figure 6: Dynamic source edition

Faust applications between themselves. Other
drivers have then been added, making this
component of the structure as flexible as
the others. So when Faust applications are
running, FaustLive gives the possibility to
dynamically switch the audio driver. FaustLive
does not need to be stopped. The migration is
made during execution and is applied to every
Faust application running. JACK, NetJack,
CoreAudio and PortAudio are the integrated
drivers in FaustLive (Figure 7).

Figure 7: Dynamic driver migration

FaustLive expands its radius of action to ex-
ternal interactions. A smartphone can open an
OSC3 interface, controlling the application re-
motely (Figure 8).

Likewise, a HTML interface is accessible
through a Qr Code4. By scanning it with a
touchpad (for instance), the remote interface

3OSC : Open Sound Control
4QR code (abbreviated from Quick Response Code)

is the trademark for a type of matrix barcode (or two-
dimensional barcode)



Figure 8: OSC interface

is opened in a browser. In both cases, the
interface is duplicated and a synchronization
between the local and remote interface is
established.

The HTML interface has an additional
interest: it is set up to enable drag and drop.
Therefore, the user controlling the remote
interface can also change the behavior of the
application by dropping his own DSP. It is sent
to the local application where it replaces the
running one, using the crossfade mechanism.
Finally, the remote interface is updated (Figure
9).

If many or/and heavy Faust applications
are opened, local CPU load can be saturated.
The migration of calculations to other machines
can lighten this load. On account of dynamic
compilation, the audio computation module
can be relocated on another machine (Figure
10). The list of remote servers available is built
dynamically so that it is simple to switch from
local processing to remote processing.

A user may wish to run his Faust appli-
cation in an other environment (Max/MSP,
SuperCollider, ...). For that matter, a link to
FaustWeb, a remote compilation web service, is
integrated in FaustLive. The user only has to
choose the platform and environment he wishes
to target. In return, he will receive the binary
of the requested application or plugin.

When FaustLive is exited, the last configu-
ration is saved and will be restored at its next
execution. A user may also save the state of
the application at any moment. In a second
phase, he will be able to reload his snapshot,

Figure 9: Remote drop

Figure 10: Remote processing

by importing it in the current state or recalling
it (Figure 11).



Figure 11: Reloading snapshot

4 FaustLive - Technical View

4.1 Basic FaustLive Features

The first aim of FaustLive is to create a dynamic
environment for Faust prototyping, by embed-
ding libfaust. The resulting dynamic compila-
tion chain (Figure 12) presents the advantage
of speeding up the compilation process. Return-
ing almost right away the executed application,
this compiler is a stepping stone for dynamic
behaviors.

Figure 12: Compilation chain in FaustLive

Now that it is possible to dynamically
compile Faust code, new prospects are rising.
A user may drop his Faust code as a file, a
string or a url, on a running application. As
a result, the code is immediately given to the
embedded compiler and the new application
replaces the previous one. Since FaustLive is
designed for dynamic uses, it is very important
to ensure a continuity in the sound. For that
matter, a crossfade is calculated between the
two relaying Faust applications.

Moreover, a Faust application is linked to
its source, so that any modification in the
Faust code will lead to a recompilation. This
particular aspect is central, for it simplifies

the prototyping process: a user can modify his
code at leisure and see/hear instantly the result.

An important asset of FaustLive is the coex-
istence of multiple Faust applications, in op-
position with the QT-JACK architecture from
Faust “static” distribution, where every Faust
program has to be compiled separately to pro-
duce its own application. Here, each application
evolves with the actions it undergoes and has its
own set of dynamic parameters (Figure 13).

Figure 13: FaustLive’s environment

4.2 Audio Drivers

FaustLive has integrated JACK, CoreAudio,
NetJack and PortAudio5. So that it’s possible
to switch audio structures or modify its pa-
rameters (such as buffer size or sample rate)
during FaustLive’s execution. Every running
audio client is stopped, then the applications
are transferred in the new domain to finally be
restarted.

4.2.1 JACK

JACK is a system for handling real-time,
low latency audio (and MIDI). It runs on
GNU/Linux, Solaris, FreeBSD, OS X and Win-
dows. It can connect a number of different ap-
plications to an audio device, as well as allowing
them to share audio between themselves.

Therefore, an interesting constraint in using
JACK is the matter of the connections. When

5JACK, CoreAudio and NetJack are used on OSX,
JACK and NetJack on Linux, PortAudio, JACK and
NetJack on Windows.



connections have been established, the objec-
tive is to maintain them even if the Faust
application changes in a window. If the new
application has more ports than the previous
one, the user will have to make the connections
himself.

4.2.2 NetJack

NetJack is a Realtime Audio Transport over
a generic IP Network, fully integrated into
JACK. NetJack synchronizes all clients to one
soundcard, so there is no resampling or glitches
in the whole network. The master imposes the
sample rate and buffer size, in relation to its
audio device.

4.2.3 CoreAudio and PortAudio

Because the protocol has to be strictly the same
on the client and on the server’s side, JACK and
NetJack have to be linked as a dynamic library.
The problem it brings is that FaustLive’s in-
stallation is linked to JACK’s installation. To
avoid this inconvenience for beginner users, a
CoreAudio6 and PortAudio7 versions have been
developed. Included in the standard libraries or
easily linked as a dll, they do not expand the
user’s work.

4.3 Control Interfaces

To offer a modular application, FaustLive
expands the choices of the user, concerning the
control interface.

4.3.1 OSC Interface

OSC protocol is integrated to FaustLive to
offer another type of interface and enable
interoperability. Many audio environments
and devices implement this protocol so that
FaustLive will be able to communicate with
them. The user can configure the port on
which the protocol is started and then control
the interface with, for instance, an OSC touch
application.

4.3.2 HTML Interface

Faust HTML interface is also a component of
FaustLive. Loaded on any browser, this inter-

6CoreAudio is the digital audio infrastructure of iOS
and OS X. It provides a framework designed to handle
audio needs in applications.

7PortAudio is a free, cross-platform, open-source,
C/C++ audio I/O library. It is intended to promote
the exchange of audio software between developers on
different platforms.

face controls the DSP’s parameters, through a
HTTP connection. When it is built, a server
is started, taking care of delivering the HTML
page (Figure 14). A synchronization between
the local and the remote interface is also in-
sured.

To ease the opening of the interface, a Qr
Code is built from the HTTP address, thanks
to libqrencode. Most smartphones and portable
equipments have a QrCode decoder. By scan-
ning the Qr Code, a browser gets connected to
the interface page.

4.3.3 Preferences

The challenge FaustLive was confronted with
is to provide an interface that gives as many
liberties as possible to the user all the while
being easy to apprehend. In that direction,
OSC and HTTP ports are configurable in
the window’s options. The window toolbar
is collapsed, by default, so that a “basic”
user won’t feel assailed by preferences (Figure
13). Both protocols use 5510 as default port.
When the TCP listening port number is busy,
the system automatically looks for the next
available port number.

Figure 14: HTML interface with control and
dropping services

4.3.4 Remote Drag and Drop

As the rest of Faust current distribution,
the HTML interface has a “static” behavior.
The intention, to copy FaustLive’s dynamic
behavior, led to adding a dropping area to
the HTML interface. This HTTP service is



independent and specific to FaustLive. The
server, started by FaustLive, is able to create
a HTML page that encapsulates the remote in-
terfaces. The resulting service of remote inter-
face and DSP drop has the following address:
http://IP:DroppingPort/InterfacePort (Figure
14).

The dropping port is set in the preferences
and is common to all the Faust applications.
The remote interface port is distinct for every
Faust application and editable in the window’s
options.

The reaction to the drop follows FaustLive’s
model. The DSP is first sent to FaustLive as a
HTTP post request. The DSP is compiled and
replaces the previous one, after the crossfade.
At last, the remote interface is updated.

4.4 Remote Processing

To widen its benefits, FaustLive enables remote
processing. The compilation and process
calculation are redirected on a remote machine
and local CPU load can be lightened.

On a remote machine, an application starts
a HTTP server, offering the remote compila-
tion/processing service. This server is waiting
for requests.

On the client’s side (FaustLive), an API
“proxy” makes it transparent to create a
remote-dsp rather than a local llvm-dsp (c.f
2.2). This API, libfaustremote, takes care of
establishing the connection with the server.

The first step (compilation) is carried out
by the function createRemoteDSPFactory. The
code is sent to the server, which compiles it
and creates the “real” llvm-dsp-factory. The
remote-dsp-factory returned to the user is an
image of the “real” factory. Before sending the
Faust code, a Faust to Faust compilation
step is executed locally, to solve all the depen-
dencies. This way, the expanded code sent to
the server is self-contained.

The remote-dsp-factory can then be instan-
tiated to create remote-dsp instances, which
may run in the audio/visual architecture cho-
sen (here, FaustLive).

To be able to locally create the interface, the
server returns a json-encoded interface. This
way, the function buildUserInterface can be
recreated, giving the impression that a remote-
dsp works as a local llvm-dsp.

Moreover, the audio processing is redirected
through a NetJack connection. The audio data
is sent to the remote machine which processes
it and sends back its results. In addition to
the standard audio flow, one midi port is used
to transfer the controllers values (Figure 15).
The benefit of this solution is to transmit
synchronized audio and controllers in the same
connection. Moreover, the audio samples can
be encoded using the different possible audio
data types : float, integer, and compressed
audio (using the OPUS codec8).

Figure 15: Remote compilation

libfaustremote uses libcurl to send http
requests to the remote server, handled with
libmicrohttpd.

On FaustLive’s windows, the service of re-
mote processing is simply interfaced. The Zero-
Conf protocol is used to scan the remote ma-
chines presenting the service. A list is then
dynamically built with the available ones. By
browsing in the list, the user can then switch
from a machine to another or come back to lo-
cal processing very easily.

4.5 FaustWeb

In order to simplify the accessibility of the
Faust compilation, this web service of remote
compilation has been conceived. It receives a
Faust DSP and returns a plugin or applica-
tion in the chosen target architecture. As an
outcome, the installation of Faust package and
all additional SDKs on the user machine is not
necessary anymore. Anyone can write a Faust
application, send it to the server and receive a
plugin.

This service is accessible from a browser but
requires several requests. Through FaustLive,

8http://www.opus-codec.org



the export is facilitated. A menu is dynami-
cally built with the platforms and architectures
available. And as the user makes his choice,
his code is sent to the server. The first step is
the syntax verification, returning a sha1 key,
with which multiple requests can be made.
The second step is the compilation, using
the standard “static” chain and returning the
chosen application to the user (Figure 16).

Figure 16: Steps of the compilation chain
through FaustWeb

4.6 Session Management

A concept of session is introduced to preserve
the state of the application (parameters values,
position on screen, audio connections, compila-
tion options, ...) when the application is closed
or when the user takes a snapshot, which saves
his session in a .tar file.

A FaustLive snapshot is self-contained. All
the local resources needed (like Faust DSPs)
are copied into the folder. Pointers to the re-
sources are used as much as possible. But if
a source file is erased or the snapshot is trans-
ferred on another machine, copies ought to be
employed.

To decrease the compilation time, the out-
put of Faust compiler, the optimized LLVM
IR code, is saved. When the application is re-
called, Faust compiler’s and LLVM IR to IR
optimization steps are skipped. For very heavy

programs, the gain can be noticeable (from a
few seconds to almost instantaneous).

5 Conclusion

FaustLive brings together the convenience of a
standalone interpreted language with the effi-
ciency of a compiled language.

FaustLive offers currently the shortest de-
velopment cycle for Faust applications, allow-
ing even to modify the code of an application
while it is running. It integrates advanced re-
mote computation and control features for real-
time distributed audio applications. Moreover
FaustLive provides, via its export functionality,
a convenient front-end for FaustWeb, the com-
pilation web service of Faust. The project is
open-source and available on Sourceforge [3]. It
runs on Linux, OSX and Windows.

Acknowledgments
This work has been implemented for one part
under the INEDIT project [ANR-12-CORD-
0009] and for the other part under the FEEVER
project [ANR-13-BS02-0008]. Both projects are
supported by the “Agence Nationale pour la
Recherche”.

References

[1] A. Graef. Functional signal processing with
pure and faust using the llvm toolkit. In
Proceedings of the Linux Audio Conference.
Linux Audio Conference, 2011.

[2] faust2 repository.
http://sourceforge.net/p/faudiostream
/code/ci/faust2/tree/.

[3] faustlive repository.
http://sourceforge.net/p/faudiostream
/faustlive/ci/master/tree.

[4] S. Letz, Y. Orlarey, and D Fober.
Comment embarquer le compilateur faust
dans vos applications? In Actes des
journées d’informatique musicale. Journées
d’informatique musicale, 2013.

[5] S. Letz, Y. Orlarey, and D Fober. Dynamic
compilation of parallel audio applications.
Compilers for Parallels Computing, 2013.

[6] Y. Orlarey, S. Letz, and D. Fober.
FAUST: an Efficient Functional Approach
to DSP Programming. Editions DELA-
TOUR FRANCE, 2009.


