
Clock Skew Compensation over a High Latency Network

Dominique Fober, Stéphane Letz, Yann Orlarey
GRAME Research Laboratory

9 rue du Garet, BP 1185, 69202 LYON Cedex 01, France
[fober, letz, orlarey]@grame.fr

Abstract

Exchange of time stamped events between different stations raises the problem of the clock frequencies
difference as soon as one station try to compensate for the transmission delay and to render the events
with a minimum time distortion. We propose a simple, efficient and low cost method to compensate for the
clock frequencies difference. This method rely only on regular time stamped packets transmissions and
may be used in many cases. It provides good performances to the receiver station in regard of the sender
reference time even on a heavily loaded communication channel. It operates also very efficiently on a low
latency local network.

1. Introduction
In the musical domain, real-time rendering of time
ordered events transmitted over a high delay
network is a tricky task as time ordering is part of
the musical information itself and should be
preserved with a maximum acuracy. Obviously,
playing the transmitted events at reception time is
not a solution as the transport latency variation will
introduce an important time distortion which may
reach several hundred of milliseconds on the
Internet. Therefore, any suitable real-time
transmission protocol should include mechanisms
to compensate for the latency variation. Such
mechanisms are based or equivalent to buffering
technic [1, 2, 3, 4] which consists in delaying the
events rendering by a fixed value, greater than the
maximum latency variation expected. However, if
the receiver and sender clock frequencies differ,
this buffering technique will sooner or later reach
its limit:
• if the receiver clock is running faster than the

sender clock, the receiver will consume the
events faster than produced, exhausting at term
the provisions made to compensate for the
transport latency,

• if it is running slower, the number of buffered
events will increase with time, exhausting at term
the receiver memory space.

For the rest of the paper, we'll refer to the clock
frequencies difference as the "clock skew".
Clock synchronization has been subject of many
works. As it is one of the most basic problem in
distributed systems, many Clock Synchronization
Algorithms (CSA) have been developed [5, 6, 7] to
ensure that physically dispersed process will
acquire a common notion of time using local
physical clocks and message exchange over a
communication network.
Beside distributed systems point of view, protocols
such as NTP or SNTP [8, 9] have been designed,
intended to synchronize clocks over the Internet.
Partialy based on NTP, time synchronization has

also been approached in the context of audio
streams [10].
Our proposed method differs from the protocol
approaches for the following reasons:
• it operates without requiring a master clock,
• it doesn't require any transaction to operate and

therefore may be used with an existing protocol
such as MWPP [11].

The clock skew detection is based on distributed
systems algorithms, modified to take account of
peer-to-peer connections and of the high
transmission delay introduced by the Internet.
The rest of this paper is structured as follow:
section 2 presents the clock skew detection
algorithm, section 3 is dedicated to its
implementation, section 4 deals with performances
issues, and section 5 summarizes and outlines the
future developments of this work.

2. Clock skew detection algorithm

2.1 Related technologies
In distributed systems, a common approach to
establish a common time base consists in using
fault-tolerant interactive convergence algorithms.
These systems are generaly made up of several
nodes, located on the same network. The principle
of these algorithms is the following:
• at regular intervals called “resynchronization

intervals”, all the nodes of the system exchange
their clock values in order to determine a clock
correction term. Communication between the
nodes is generaly achieved using broadcast of
time stamped messages over the network.

• for each received message, a node will compute a
clock deviation as the difference between the
message reception and transmission dates, minus
the current evaluation of the transport latency.

At the end of the resynchronization interval, each
node will have collected a set of clock deviations,
which are then used to compute a clock correction
term. Several methods exists, we reused the
following:

• the Fault Tolerant Midpoint Algorithm (FTMA):
operates on a sorted set of clock deviations, it
assumes that some nodes of the system are
sending faulty values: these faulty values are
therefore discarded and the correction term is
then computed as the arithmetic mean of the
lower and higher remaining values.

• the Adaptative Exponential Fault Tolerant
Midpoint Algorithm (AEFTMA): operates a
smoothing of the correction terms produced by
FTMA using exponential smoothing technics,
where the weighting factor is dynamically com-
puted according to the current correction term.

Compared to these works, our situation constitutes
a special case from several points of view:
• only two nodes are involved in the skew

detection process,
• they don’t have to agree on a common time base:

each node is independantly estimating its clock
deviation compared to its peer node,

• as the latency variation is used to detect the clock
skew, we cannot consider that there are faulty
messages.

 2.2 Peak latency filtering
We have made several transport latency
measurements using differents network paths. It
appears that this latency globally fits in a constant
range, with more or less frequent peaks. The range
width and the peaks amplitude may greatly vary
depending on the Internet service provider and the
network path.

δn (ms)
250

200

150

100

5 0

0
time ~5mn

clock
skew

Figure 1: continuous latency variation measured
over 5 mn

The figure 1 shows 5 minutes of continuous
measurements done over a 42,6 kbps modem line
connection via a free Internet service provider, at a
time renowned for being a high traffic period. The
measurement has been done using time stamped
UDP packets sent every 200 milliseconds. The
slow latency increase slope is due to the clock skew
and detection of the skew may be viewed as
measuring this slope.
The intended solution consists in peak filtering and
in computing the convergence point of the
remaining values.
Our algorithm, named Peak Tolerant Midpoint
Average algorithm (PTMA) operates similarly to
FTMA with the following differences:

• the sorted FTMA clock deviation vector made up
of the n nodes deviations collection is
transformed into a sorted latency variation vector
made up over time,

• the discarded values count is not limited to the k
Byzantine tolerance,

• the arithmetic mean is computed using all the
remaining latency variations (and not only the
lowest and highest).

Let w be the time window size of the latency
variation collection and k be the number of values
discarded per window. At the time t, the sorted
latency variation vector is

∆t = [δt− w ... δi ... δt], δi ≤ δi + 1

and the average midpoint latency variation is then
computed as:

LVt =
Σδi

w − k
t− w+ k/2

t− k/2

Intuitively, the algorithm operation may be viewed
as a drastic selection on the latency variations: it
tends to discard all the lowest and highest
variations; but also as a selection on the variation
history as it retains only a discontinuous subset of
the sliding temporal window. Applied to the
measured latency variations, we obtain what we call
the skew profile.

 2.3 Skew profile smoothing
However, in a more chaotic transmission context,
the skew profile obtained with PTMA is varying
significantly around the real clock skew. Therefore
we have extended PTMA to the Exponential Peak
Tolerant Midpoint Average algorithm (EPTMA) by
simply applying exponential smoothing to the
PTMA output. Assume that LVt is the skew profile
value at time t, EPTMA computes the
corresponding smoothed value by:

LVEPTMA = α.LVt + (1 − α).LVEPTMA
t− 1t

where the weight factor α is such as 0 ≤ α ≤ 1.
Choosing a small α value gives more weight to the
passed values and minimizes the effect of any pulse
while this effect is more persistent.

2.4 Initialization speeding-up
Acuracy of the results is highly dependant of the
parameters used by the algorithm. In particular,
choosing a large value for the temporal PTMA
window size W and a small value for the retained
values R will increase the long term acuracy but
may also delay significantly the first results
produced by the algorithm. Therefore, we improved
PTMA in order to produce values earlier. Let n be
the number of values currently pushed in the
window: as long as n is lower than W, we
dynamically compute the retained values r as:

rn = R − (n - W)2
R

W2

which produces a parabolic curve from 0 to R when
n varies from 0 to W.
Always to speed up the initialization process, we
choosed to use a weighting factor α = 1 for the first
value pushed into EPMTA.

3. Implementation
Detection of the clock skew requires only to
receive packets time stamped with their transmis-
sion date at a sufficient rate to guaranty a good
acuracy. Input values of the algorithm are latency
variations which may be simply measured as
follow:
• at first packet reception, a receiver host evaluates

its initial apparent clocks offset (ACO1) as the
difference between the current local time and the
packet time stamp.

• then for any following packet, the latency
variation LVn is:

LVn = ACOn - ACO1 (n > 1)
where ACO

n
 is the apparent clock offset for the

packet n.
Let CORRn be the correction term returned by
EPTMA for the packet n, the corrected local time is
then:

TCORR = T − CORRn

 where T is the current local time.

4. Performances
Actually, the system behave like shown in figure 2:
at initialization stage (time 0), the receiver and
sender clock offset has a given value (150 for the
example) which will continue to move up to the
stable stage. Note that on the given example, the
clock deviation is zoomed 10 times.

0

5 0

100

150

200

250

300

350

400

450

500

time ~5mn

clock deviation
(zoomed x 10) stable stage

stable deviation

δn (ms)

Figure 2: system behavior
At the stable stage time, the additionnal clock
deviation becomes equal to:

K = k ± ε(eptma)
where k is the stable constant deviation and ε(eptma)
represents the error due to the skew profile
evaluation.
We choosed to characterize the algorithm
performances with both k and ε(eptma) values: the k
value is important because it is to be added to the
provisions made for the latency compensation and

the error denotes the stability of the system.
The results presented below come from a
simulation of the system on a single station, using
however both latencies generated by an abstract
model of a network path behavior and latencies
collected from real network transmissions.

3.1 Internet measurements
For the measurments below, we made use of the
following parameters:
• packets transmission rate: 200 ms
• PTMA window size: 200 values
• retained values: 20 values
• EPTMA weighting factor α: 0.01
First results have been collected using an abstract
model of a network path behavior with a clock
deviation of 2 for 10000 time units. Figure 3
illustrates an example of the transport conditions
which may be qualified as bad.

0

100

200

300

time ~7mn

δn (ms)

Figure 3: example of simulated latencies.
Results of 100 successive simulations over 5
minutes are presented by the table 1: it shows the
maximum values reached, the average values and
the standard deviations.

k
max 20.6 –1.25

average 6.79 –0,67

std dev 5.06 0.20

Table 1: simulation of a busy network

k
max 23.25 –0.65

average 8.11 –0.49

std dev 8.32 0.17

Table 2: real world latencies
We have also measured the performances using real
latencies variations collected on the Internet. The
estimated clock deviation was 1 for 10000 time
units. Other parameters remain unchanged. Results
are presented by the table 2.
It appears that in both cases, the system presents a
good stability and that the remaining clock
deviation may be considered as low in regard of the
expected latency over the Internet.
Using real world data, we have ignored the worst

ε(eptma)

ε(eptma)

transport conditions encountered because the
latency variation has exceeded reasonable values
for a correct time rendering (over several seconds).
However, it is interesting to examine the system
behavior in this exceptionnal context. Figure 4
presents the clock deviation for one of these worst
cases. Note that the deviation deviation is still
zoomed 10 times.

0

100

200

300

400

500

600

700

800

900

1000

time ~7mn

stable stage 1

stable stage 2

peaks over 3s.

δn (ms)

Figure 4: worst case latency
It appears that the system is self-adapting to
medium or long term changes of the network
behavior: it smoothly switch from one stable stage
to another one. Note also that the overall error
ε(eptma) has always been lower than ±2.

3.2 Local network measurements
The algorithm operates also very efficiently on a
low latency local network. Table 3 presents the
corresponding results. Latency is characterized by a
range of 1 ms delay with peaks up to 5 ms.

k
max 0,7 –0.05

average 0,69 –0.01

std dev 0,02 0.02

Table 3: local network performances
The parameters used changed from previous
experiments:
• packets transmission rate: 200 ms
• PTMA window size: 30
• retained values: 10
• EPTMA weighting factor α: 0.2
The receiver clock deviation was 2 for 10000 time
units. The system shows a very good stability and a
remaining clock deviation under one time unit.

4. Conclusion
We have proposed a new algorithm to compensate
for the clock skew on a high delay network. It runs
very efficiently on the Internet but also on a local
network. Its presents many advantages compared to
previous works:
• it doesn't require any transaction to operate and

therefore it may be used independantly of the
transport protocol,

• it doesn't rely on a master/slave scheme: each
receiver is independantly evaluating its clock

skew relatively to the sender,
• consequence of the previous point: as the

compensation scheme is attached to a given real-
time stream, a network of any complexity can
operate correctly and in particular, a receiver may
handle several incoming streams with different
clock skews characteristics.

This algorithm has been implemented in the form of
MidiShare [12] drivers and provides real-time
communication over Internet or over a local
network to the system client applications.
It may be probably more improved: in particular
concerning the way to handle the initalization stage
(the first seconds of a transmission) which is critical
in regard of the future efficiency.

Acknowledgements
This research was partly supported by the Mil
Productions Company (Villefranche/Saone -
France). We would like to thank it for its support.

References
[1] Fober D. Real time, musical data flow on Ethernet
and MidiShare software architecture. Proceedings of the
ICMC, 1994, ICMA, San Francisco, pp. 447-450

[2] M. Goto, R. Neyama, Y. Muraoka. RMCP: Remote
Music Control Protocol. Proceedings of the ICMC, 1997
ICMA San Francisco, pp.446-449

[3] J.P. Young, I. Fujinaga. Piano master classes via the
Internet. Proceedings of the ICMC, 1999 ICMA San
Francisco, pp.135-137

[4] D. Fober, Y. Orlarey, S. Letz. Real Time Musical
Events Streaming over Internet. Proceedings of the
International Conference on WEB Delivering of Music,
2001, pages 147-154

[5] T.K. Srikanth, S. Toueg. Optimal Clock
Synchronization. Journal of the ACM, vol. 34, pp.
626–645, July 1987.

[6] M.M. de Azevedo and D.M. Blough, “Fault-Tolerant
Clock Synchronization for Distributed Systems with High
Message Delay Variation, Fault-Tolerant Parallel and
Distributed Systems, D. Pradhan and D. Avresky, eds.,
pp. 268–277, IEEE CS Press, 1995.

[7] R. Ostrovsky, B. Patt-Shamir. Optimal and efficient
clock synchronization under drifting clocks. Proceedings
of the eighteenth annual ACM symposium on Principles
of distributed computing, 1999, pp. 3 - 12

[8] D. L. Mills. Network Time Protocol (NTP) version 3.
IETF, RFC 1305, 1992

[9] D. L. Mills. Simple Network Time Protocol (SNTP)
version 4. IETF, RFC 2030, 1996

[10] E. Brandt R.B. Dannenberg. Time in Distributed
Real-Time Systems. Proceedings of the ICMC, 1999
ICMA San Francisco, pp.523-526

[11] J. Lazzaro, J. Wawrzynek. The MIDI Wire Protocol
Packetization (MWPP). Internet-Draft. IETF, 2002,
http://www.ietf.org/internet-drafts/draft-ietf-avt-mwpp-
midi-rtp-01.txt (work in progress)

[12] Y. Orlarey, H. Lequay. MidiShare : a Real Time
multi-tasks software module for Midi applications -
Proceedings of the ICMC 1989, ICMA San Francisco,
1989, pp.234-237

ε(eptma)

