
Elody : a Java+MidiShare based Music Composition

Environment

Yann Orlarey, Dominique Fober, Stphane Letz
(orlarey, fober, letz)@rd.grame.fr

Grame, 9 rue du Garet, BP 1185, 69202 Lyon Cedex 01, France

Abstract
This paper introduces Elody, a MidiShare compatible music composition environment developed in
Java. The heart of Elody is a visual functional language derived from the λ-calculus. The languages
expressions are handled through visual constructors and Drag & Drop actions allowing the user to
play in realtime with the language.

1 Introduction

Elody is music composition environment based on a
visual functional language, a direct-handling user in-
terface and Internet facilities. It is written in Java
and uses the real-time MIDI services of MidiShare [1].

Elody allows algorithmic descriptions and trans-
formations of musical structures and compositional
processes. Its design tries to promote a creative and
experimental attitude (including for the program-
ming activity), as well as Internet users collabora-
tions.

Working with Elody mainly consists in building
new musical expressions: musical objects as well as
programs, by combining or composing other musical
expressions. The user interface is based on drag &
drop and visual functionalities. Each user action re-
sults in an immediate sound and graphical feedback.

Programming using Elody is a natural and di-
rect extension of the music composition activity and
doesn’t require a distinct programming language.
This approach is called homogeneous programming.
An Elody program is a generalized musical expres-
sion based on the λ-calculus concept of abstraction:
it allows to use the exact same means to describe,
combine, edit or represent musical objects and pro-
grams (see [2]).

The Elody environment have been developed us-
ing recent Internet technologies in order to facilitate
its spread on the Web. The implementation is de-
veloped in Java, a programming language similar to
C++ which allows to write classical programs and
small programs called ”applets” that can be embed-
ded in Web pages. Elody can run either as a stan-
dalone application or as an applet.

Elody documents are saved in HTML. This al-
lows to:

1. publish musical sequences which can be directly
displayed in a Web browser. HTML pages a user
wants to share will be available for all Elody
users through a central server.

2. musical expressions can be used to add musical
content to a page which contains an Elody player
applet. This applet will load, evaluate and play
the expression contained in the Web page itself.

3. every published expression can be used by other
Elody users. An Elody expression can reference
others Elody expressions using URL links. which
will be automatically fetched and loaded by the
language parser.

4. Elody can use musical resources already avail-
able on the Web like MIDIFile for example.

2 User interface

Figure 1 gives an overview of the Elody environment.
All the functionalities are available by way of visual
constructors. A constructor is a particular way to
create new expressions by combining existing ones,
in sequence or in parallel for example. Visual con-
structors are represented by one or several arguments
boxes where the user drop expressions, and a result
box where he can get the resulting expression.

The figure 2 shows the use of the sequence con-
structor (S). The arguments are dropped in the left
and middle boxes and the resulting sequence appears
in the result box on the right. The constructors per-
form no real computation. The resulting expression



Figure 1: Overview of the user interface

is a tree whose root node is labeled with the construc-
tor name, and branches are the used sub-expressions.
Therefore an expression always keeps track of all its
components and of the way to combine them: the
intentional description. The evaluation of an expres-
sion,the transition from the intentional description
to the corresponding extensional description, is only
done for graphical or Midi rendering. Users always
handle non-evaluated, intentional expressions.

2.1: Drop of the first ar-
gument

2.2: Drop of the second
argument and result

Figure 2: The sequence constructor

As figure 3 shows, expressions have a piano like
representation, with a non-linear (arc-tangent) time-
scale in order to represent the whole expression in
a limited space. Lazy evaluation techniques used in
graphical and Midi rendering, allow to handle infinite
objects, like the presented sequence C, E, G, repeated
ad infinitum.

Figure 3: C E G sequence repeated ad infinitum

The basic musical expressions are notes and rests.
They include a duration and a color. A note also
includes a pitch, a velocity and a channel.

The chord constructor, figure 4, is used to put
notes on the pitch scale and to create chords. Con-
centric circles represents the octaves and radius the
degrees within an octave.

Figure 4: The chord constructor

The rules window, figure 5, includes the 8 main
constructors: abstraction (λ), recursive abstraction
(∞) and application (@), used for programming, se-
quence (S) and mix (M) for temporal organization of
expressions, begin (B) and rest (R) to copy and cut
part of an expression and duration (D) to adjust its
duration.

Figure 5: The rules window

More sophisticated constructors are also avail-
able, like the expressions sequencer figure 6. It works
like an old analog sequencers: it includes 8 steps
where one can drop musical expressions. Pitch, ve-
locity and duration can be adjusted for each step.
The expression sequencer works in real-time: when
the Play option is selected the steps are played in
a loop, a red dot indicates the current step and the
user can dynamically change the settings or drop new
expressions.



Figure 6: Expressions sequencer

3 Programming

One of the main purpose of a music composition envi-
ronment is to allow to express intentional descriptions
with all the required generality, and to maintain the
relation with the corresponding extensional descrip-
tions.

These two type of descriptions are necessary. Ex-
tensional description is needed to render the objects
and to work on their details. The intentional descrip-
tion presents many interests:

Conciseness. Compared to its extensional descrip-
tion, an intentional description can be very con-
cise. In this case, it is a fast and efficient way to
describe an object.

Structure. An intentional description allows to
clarify an object underlying idea, its general
structure, its building principles. It is open
to analogy, generalization, systematization and
reusing in other contexts.

Experimentation. Intentional description modifi-
cations have generally a large impact. A small
modification of the intentional description can
produce a large modification of the extensional
description. That promotes experimental ap-
proaches like what happens if I use this in place
of that within my intentional description.

3.1 Homogeneous languages

Reaching generality and abstraction within inten-
tional description presuppose a kind of program-
ming. The homogeneous language approach we have
adopted tries to insert the programming activity in a
conceptual framework directly related to the existing
skills and knowledge of the user. Instead of providing
the user with a separate programming language with
specific concepts, syntax, semantic and editing tools,
the key idea of the homogeneous language approach
is to extend in a consistent way the domain of objects
the user manipulates with his editing tools to include
user-defined programs. This is achieved mainly by
introducing the concepts of abstraction and applica-
tion of λ-calculus. The results are highly specialized
functional languages.

Elody is based on this approach. User-defined
programs are abstractions : generalized musical ex-
pressions obtained by making variable parts of an ex-
isting expression. These abstractions can be applied
to other objects to produce a result, and composed to
build new programs. Therefore Elody makes no real
distinction between musical objects and programs.
Programs are just musical objects with variable parts.
They are visualized, manipulated and assembled in a
consistent way like any other musical objects, with-
out resorting to a separate programming language.

3.2 Building abstractions

Let’s see how to build some simple abstractions.
Dropping the same note in the two argument boxes
of the sequence constructor (S) as in figure 7.1, we
build a repetition. This is a specific example of repe-
tition. We can now generalize this specific repetition
by making variable the note used, thus defining the
general concept of repetition. To do that we use the
abstraction constructor (λ). We drop in the middle
box the expression we want to generalize and in the
left box the element we want to make variable. The
resulting Double abstraction appears in the result box
on the right (figure 7.2).

7.1: Building a particular repetition

7.2: Double function : a generalization of the
previous repetition obtained by making variable
the used note

Figure 7: Definition of the Double function

Using the same method we can now define a
Triple function which repeats it’s argument three
times (figure 8.1), and apply it on another expres-
sion(figure 8.2).

These simple examples illustrate two important
points. First, the musical data language itself is used
as programming language. Second, we don’t have to
write abstractions from scratch, using a priori vari-
ables. We can start from a concrete example, even a



8.1: Triple function

8.2: Application of the Triple function

Figure 8:

sequence played on a keyboard, and showing the parts
we want to make variable, let the generalization algo-
rithm of the system compute the actual abstraction.

3.3 Composing Abstractions

An abstraction like any other musical expression
has a duration. Abstractions can be time-stretched,
mixed and organized in sequence. For example we
can take the previous Double and Triple functions,
time-stretch them to a particular duration and then
create a sequence alternating them several times.
Figure 9 shows the result of alternating 8 times the
Double and Triple functions, a sequence of 16 ab-
stractions.

Figure 9: Alternating Double and Triple functions

This sequence of abstraction is also a program
and it can be applied to some argument. When a se-
quence is applied, every element is applied according
to its duration to the corresponding part of the argu-
ment. Therefore if we time-stretch this sequence to
the duration of an object and we apply it to this ob-
ject, the result is the first 1/16 of our object repeated
twice, the second 1/16 of our object repeated three
times, the third 1/16 of our object repeated twice,
etc. as shown in figure 10.

3.4 Generalized Abstractions

What we can make variable is not limited to single
notes. In the previous example we have used the
Triple function. We can generalize the previous result

Figure 10: Application of a sequence of abstractions

by making variable the Triple function. The result is
a new abstraction we can apply to another function,
for example a three voices canon as in figure 11.2.
The canon function is obtained by abstracting a note
in a expression where this note appears with three
different pitches and with different time shift. (fig-
ure 11.1).

11.1: Canon Function

11.2: Abstraction of the Triple function and
application to the Canon function

Figure 11:

References

[1] Orlarey, Y. and H. Lequay 1989. “MidiShare: a
realtime multi-tasks software module for Midi
applications”, Proc. ICMC 89, San Francisco:
ICMA Publishing.

[2] Orlarey, Y., D. Fober, S. Letz and M. Bilton
1994. “Lambda-Calculus and Music Calculi”,
Proc. ICMC 94, San Francisco: ICMA Publish-
ing.


