
JACK AUDIO SERVER FOR MULTI-PROCESSOR MACHINES

S.Letz, D.Fober, Y.Orlarey
Grame - Centre national de création musicale

letz, fober, orlarey@grame.fr

ABSTRACT

Jack is a low-latency audio server, written for POSIX
conformant operating systems such as GNU/Linux. It can
connect a number of different applications to an audio de-
vice, as well as allowing them to share audio between
themselves. We present a new C++ version for multi-
processor machines that aims at removing some limita-
tions of the current design: the activation system has been
changed for a data flow model and lock-free programming
techniques for graph access have been used.

1. INTRODUCTION

Jack is a low-latency audio server that can connect a num-
ber of different applications to an audio device, as well
as allowing them to share audio between themselves. The
current code base, written in C, is available for GNU/Linux
and MacOSX systems[3].

The system is now a fundamental part of the Linux au-
dio world, where most of music-oriented audio applica-
tions are Jack compatible. On MacOSX, it has extended
the CoreAudio architecture by adding low-latency inter-
application audio routing capabilities in a transparent manner[2].

2. ARCHITECTURE

Jack Server

Audio driver
(ALSA, 

CoreAudio...)

Internal 
client

B

Audio 
interrupt

Real-time audio buffers 
transfer

Server state change 
notifications...

External 
client 

C

External 
client

A

Figure 1. Archictecture of Jack server/client system

2.1. Server

Jack is based on a server/client model (Fig 1). The Jack
server interacts with the driver, and communicates with all
registered clients. Triggered by the driver, the server ac-
tivates the client graph, a set of connected ”nodes”, each
of which must be ”executed” on a periodic basis. In the
case of Jack, the graph is made up of Jack clients, and
each one has itsprocesscallback to be called in a specific

order. The connections between each node may take any
configuration whatsoever. Jack has to serialize the execu-
tion of each client so that the connections represented by
the graph are honored (e.g. client A sends data to client
B, so client A must execute before client B). In the event
of feedback loops, there is no ”correct” ordering of the
graph, so Jack just picks one of the legal possibilities.

Data within a Jack graph is shared between clients (and
the server) using shared memory. Each ”output port” owned
by a client has a shared memory buffer into which the
client can write data. When an ”input port” is connected
to the output port, reading from the input port simply uses
the shared memory buffer. This permits zero-copy seman-
tics for audio processing in many simple scenarios, and
minimal copying even in complex ones.

2.2. Driver

The whole graph is executed synchronously by a driver
which interacts with the hardware, waking the server at
regular intervals determined typically by its buffer size.
The server then ”distributes” this audio interrupt to all run-
ning clients. The basic requirement for the system proper
functioning is that the server and all clients do their job
(including server/client communications, audio data trans-
fer and processing) between two consecutive audio inter-
rupts (for example with a buffer size of 128 frames at
44100 Hz, this represents a 3 ms duration).

2.3. Clients

Clients dynamically register to the server, and establish
connections between themselves. Clients can be internal,
running in the server process, or external. Since the driver
that controls the audio interface presents itself as just an-
other client, sending data to and from the audio interface
is identical to sending it to and from any other client.

Each client is awaken by the engine when it is time to
operate on its data. Applications access the server through
the client library: it contains the client side of a Jack ap-
plication, takes care of server/client communication, and
exposes the API available for programmers.

Clients must implement a real-time safeprocessfunc-
tion, that is deterministic and that does not involve func-
tions that might block for a long time. The general form
used to describe RT-safety for Jack purposes is: cycles =
(A * nframes) + C, that is, the time to execute theprocess
function must be a direct function (A) of the number of



frames of audio data to be processed, combined with some
constant overhead (C). Profiling code is constantly check-
ing the system behavior in the server: too high kernel
scheduling latencies or client graph process overloading
is notified to the clients asxruns, and too slow clients dur-
ing several consecutive audio cycles are usually removed
from the graph.

3. GRAPH EXECUTION

3.1. Sequential model

In the current activation model (either on Linux or Ma-
cOSX), knowing the data dependencies between clients
allows to sort the client graph to find an activation or-
der. This topological sorting step is done each time the
graph state changes, for example when connections are
done or removed. This order is used by the server to acti-
vate clients in sequence.

Forcing a complete serialization of client activation is
not always necessary: for example clients A and B (Fig
2) could be executed at the same time since they both
only depend of the ”Input” client. In this graph exam-
ple, the current activation strategy choose an arbitrary or-
der to activate A and B. This model is adapted to mono-
processor machines, but cannot exploit multi-processor
architectures efficiently.

3.2. Multi-processor version

Multi-processor machines become more and more com-
mon (for example all high end Apple systems are dual
processor machines and bi-Xeon hyperthreaded machines
offer four CPU).

Taking profit of multi-processor architectures usually
requires applications to be adapted. In a Jack server like
system, there is a natural source of parallelism when Jack
clients depend of the same input and can be executed on
different processor at the same time. The main require-
ment is then to have an activation model that allows the
scheduler to correctly activate parallel runnable clients.
Going from a sequential activation model to a completely
distributed one also raise synchronization issues that can
be solved usinglock-freeprogramming techniques.

3.3. Data flow model

Data flow diagrams (DFD) are an abstract general repre-
sentation of how data flows around a system. In particular
they describe systems where the ordering of operations is
governed bydata dependenciesand by the fact that only
the availability of the needed data determines the execu-
tion of one of the process. A graph of Jack clients typically
containssequencialandparallel sub-parts (Fig 2). When
parallel sub-graph exist, clients can be executed on differ-
ent processors at the same time. A data-flow model can
be used to describe this kind of system: a node in a data-
flow graph becomesrunnablewhen all inputs are avail-
able. The client ordering step done in the mono-processor

model is not necessary anymore. Each client uses anacti-
vation counterto count the number of input clients which
it depends on. The state of client connections is updated
each time a connection between ports is done or removed.

Input Ouput

A 

B 

C D 

Figure 2. Client graph: Client A and B could be executed
at the same time, C must wait for A and B end, D must
wait for C end.

Activation will be transfered from client to client dur-
ing each server cycle as they are executed: a suspended
client will be resumed, executes itself, propagates activa-
tion to the output clients, go back to sleep, until all clients
have been activated.1

3.4. Client activation

At each cycle, clients that only depend of the input driver
and clients without inputs have to be activated first. At
the beginning of the cycle, each client has its activation
counter reseted to the number of input client it depends
on. After being activated, a client decrements the activa-
tion counter of all its connected output. Thelast activated
input client resumes the following clients in the graph (Fig
3). Each client uses an inter-processsuspend/resumeprim-
itive associated with anactivation counter. An implemen-
tation could be described with the following pseudo code:

Execution of a server cycle consists of:

- read audio input buffers
- write output audio buffers computed the

previous cycle
- for each client in client list, reset the

activation counter to its initial value
- activate all clients that depends on the input

driver client or without input
- suspend until the next cycle

C (1)

A(0)

B(0) B(0)

C (0)

A(0)

C (2)

A(0)

B(0)

Running client 

Figure 3. Example of graph activation: C is activated by
the last running of its A and B input.

After being resumed by the system, execution of a client
consists of:

1 The data-flow model still works on mono-processor machines and
will correctly guaranty a minimum global number of context switches
like the ”sequential” model.



- call the client process callback
- propagate activation to output clients
- suspend until the next cycle

On each platform, an efficient synchronization primi-
tive must be found to implement the suspend/resume oper-
ation. Mach semaphores are used on MacOSX and Linux
kernel 2.6 features the Fast User space mutEx (futex).

3.5. Lock-free implementation

In classic lock-based programming, access to shared data
needs to be serialized using mutual exclusion. Update op-
erations must appear asatomic. Lock based programming
is sensitive to priority inversion problems or deadlocks.
Lock-free programming on the contrary allows to build
data structures that are safe for concurrent use without
needing to manage locks or block threads[1].

Locks are used at several places in the current Jack
server implementation. For example, the client graph needs
to be locked each time a server update operation access it.
When the real-time audio thread runs, it also needs to ac-
cess the client graph. If the graph is already locked and to
avoid waiting an arbitrary long time, the RT thread gener-
ates an empty buffer for the given audio cycle, causing an
annoying interruption in the audio stream.

A lock-free implementation aims at removing all locks
(and particularly the graph lock) and allowing all graph
state changes (add/remove client, add/remove ports, con-
nection/disconnection...) to be donewithout interrupting
the audio stream. 2

All update operations from clients are serialized through
the server, thus only one thread updates the graph state.
RT threads from the server and clients have to see the
same coherentstate during a given audio cycle. Non RT
threads from clients may also access the graph state at any
moment. The idea is to use two states: onecurrent state
and onenextstate to be updated. A state change consists
in atomicallyswitching from the current state to the next
state. This is done by the RT audio server thread at the
beginning of a cycle, and other clients RT threads will use
the same state during the whole cycle. All state manage-
ment operations are implemented using the CAS3 oper-
ation.

Lock-free state update operations are implemented us-
ing a set of primitives operations:

• Code updating the next state isprotectedusing the
WriteNextStateStart andWriteNextStateStop
methods. When executed between these two meth-
ods, it can freely update the next state and be sure
that the RT reader thread can not switch to the next
state.4

2 Some operations like buffer size change will still interrupt the audio
stream.

3 CAS is the basic operation used in lock-free programming: it com-
pares the content of a memory address with an expected value and if
success, replaces the content with a new value.

4 The programming model is similar to a lock-based model where the
update code would be written inside amutex-lock/mutex-unlockpair.

• The RT server thread switch to the new state using
theTrySwitchState method that returns the current
state if called concurrently with a update operation
and switch to the next state otherwise.

• Other RT threads read the current state, valid during
the whole audio cycle using theReadCurrentState
method.

• Non RT threads read the current state using theRead-
CurrentState method and have to check that the
state was not changed during the read operation (us-
ing theGetCurrentIndex method):

void ClientNonRTCode(...)
{

int cur_index,next_index;
State* current_state;
next_index = GetCurrentIndex();
do {

cur_index = next_index;
current_state = ReadCurrentState();
<...copy current_state...>

next_index = GetCurrentIndex();
} while (cur_index != next_index);

}

4. PERFORMANCES

The multi-processor version has been tested on Panther
MacOSX on a mono and dual 1.8 Ghz G5 machine. Five
jack-metroclients generating a simple bip are running.

Client 1

Signal
Awake

FinishAudio 
Interrupt

t

Client 2 

Signal Awake
Finish

Server

Figure 4. Timing diagram for an example with two clients
in sequence

For a server cycle, thesignal date [blue](when the
client resume semaphore is activated), theawake date [pink]
(when the client actually wakes up) and thefinish date
[yellow] (when the client ends its processing and go back
to suspended state) relative to the server cycle start date
before reading and writing audio buffershave been mea-
sured. The first slice in the graph also reflects the server
behavior: the duration to read and write the audio buffers
can be seen as thesignaldate curve offset on the Y-coordinate.
After having signaled the first client, the server returns to
the audio driver, that internally mix the output buffers in
the kernel (offset between the first clientsignal date and
its awakedate (Fig 5)). Then the first client will be re-
sumed.

The measure is done during 5 seconds with all clients
running. The behavior of each client is then represented
as a 5 seconds ”slice” in the graph and all slices have been
concatenated on the X axis, thus allowing to have a global
view of the system.



Figure 5. Mono G5, clients connected in sequence. For a
server cycle: signal (blue), awake (pink) and finish (yel-
low) date. End date is about 250 microsecond on average.

Two benchmarks have been done. In the first one, clients
are connected in sequence (client 1 is connected to client
2, client 2 to client 3 and so on), thus computations are
inevitably serialized. One can clearly see that thesignal
date of client 2 happens after thefinisheddate of client 1
and the same behavior happens for other clients. Measures
have been done on the mono (Fig 5) and dual machine (Fig
6).

Figure 6. Dual G5. Since clients are connected in se-
quence, computations are also serialized, but client 1 can
start earlier on the second processor. End date is about
250 microsecond on average.

In the second benchmark, all clients are only connected
to the input driver, thus they can possibly be executed in
parallel. The input driver client signal all clients at (al-
most) the same date5 . Measures have been done on the
mono (Fig 7) and dual (Fig 8) machine. When parallel
clients are executed on the dual machine, one see clearly
that computations are done at the same time on the 2 pro-
cessors and the end date is thus lowered.

Other benchmarks with different parallel/sequence graph
have been done. A worst case additional latency of 150 to
200 microseconds added to the average finished date of
the last client has been measured.

5 Signaling a semaphore has a cost that appears as the ”slope” of the
signal curve.

Figure 7. Parallel clients on a mono G5. Although the
graph can potentially be parallelized, computations are
still serialized. End date is about 250 microsecond on
average.

Figure 8. Parallel clients on a dual G5. Client 1 can start
earlier on the second processor before all clients have
been signalled. Computations are done in parallel. End
date is about 200 microsecond on average.

5. CONCLUSION

A Linux version has to be completed with an adapted
primitive for inter process synchronization as well as socket
based communication channels between the server and
clients. The multi-processor version is a first step towards
a completely distributed version, that will take advantage
of multi-processor on a machine and could run on multiple
machines in the future.

6. REFERENCES

[1] D.Fober, S.Letz, Y.Orlarey ”Lock-Free Tech-
niques for Concurrent Access to Shared Ob-
jects”, Actes des Journes d’Informatique Mu-
sicale JIM2002, Marseille, pages 143–150

[2] S.Letz, D.Fober, Y.Orlarey, P.Davis ”Jack Au-
dio Server: MacOSX port and multi-processor
version, Proceedings of the first Sound and
Music Computing conference - SMC’04”,
pages 177–183

[3] Vehmanen Kai, Wingo Andy and
Davis Paul Jack Design Documentation
http://jackit.sourceforge.net/docs/design/


