
T
M

M
id

iS
ha

re

Developer
Documentation

version 1.68

GRAME
9, rue du Garet BP 1185
69202 LYON CEDEX 01
Ph: (33) 04 720 737 00
Fax: (33) 04 720 737 01
Email: grame@rd.grame.fr

Summary

Introduction.. 1
About this manual... 2
About MidiShare.. 3
Overview of a MidiShare application.. 5

Opening and Closing a MidiShare session 5
Communications and Connections ... 5
Sending and receiving... 6
Event management.. 7
Sequence management ... 8
Real time tasks .. 8
Midi Time Code Synchronisation .. 9

Some examples ... 11
Example 1 : the shortest MidiShare program....................... 11
Example 2 : still short but safer.. 11
Example 3 : waiting .. 12
Example 4 : multitasking .. 12
Example 5 : real-time event processing 14
Example 6 : a small sequencer.. 15

Reference ... 17
MidiShare Events... 18

Typology ... 18
Events Internal structure.. 20

Midi Error Codes... 22
Midi Change Codes .. 23
MidiAddField.. 24
MidiAddSeq... 26
MidiApplySeq.. 27
MidiAvailEv.. 28
MidiCall.. 29
MidiClearSeq ... 31
MidiClose ... 32
MidiConnect.. 33
MidiCopyEv... 34
MidiCountAppls... 35
MidiCountDTasks .. 36
MidiCountEvs... 37
MidiCountFields... 38
MidiDTask.. 39
MidiExec1DTask.. 41
MidiExt2IntTime .. 42
MidiFlushDTasks ... 43
MidiFlushEvs.. 44
MidiForgetTask... 45
MidiFreeCell.. 47
MidiFreeEv .. 48
MidiFreeSeq... 49
MidiFreeSpace... 50
MidiGetApplAlarm ... 51
MidiGetEv.. 52
MidiGetExtTime ... 53
MidiGetField.. 54
MidiGetFilter... 55

MidiGetIndAppl... 56
MidiGetInfo... 57
MidiGetName... 58
MidiGetNamedAppl... 59
MidiGetPortState.. 60
MidiGetRcvAlarm... 61
MidiGetSyncInfo.. 62
MidiGetTime .. 64
MidiGetVersion ... 65
MidiGrowSpace.. 66
MidiInt2ExtTime.. 67
MidiIsConnected.. 68
MidiNewCell .. 69
MidiNewEv... 70
MidiNewSeq ... 71
MidiOpen... 72
MidiReadSync... 73
MidiSend ... 74
MidiSendAt... 75
MidiSendIm.. 76
MidiSetApplAlarm ... 77
MidiSetField.. 78
MidiSetFilter... 79
MidiSetInfo ... 80
MidiSetName ... 81
MidiSetPortState .. 82
MidiSetRcvAlarm ... 83
MidiSetSyncMode.. 85
MidiShare.. 86
MidiSmpte2Time... 87
MidiTask.. 88
MidiTime2Smpte... 90
MidiTotalSpace... 91
MidiWriteSync... 92
typeActiveSens (code 15)... 93
typeChanPress (code 6)... 94
typeClock (code 10).. 95
typeContinue (code 12) .. 96
typeCopyright (code 136).. 97
typeCtrl14b (code 131)... 98
typeCtrlChange (code 4)... 99
typeChanPrefix (code 142) ... 100
typeCuePoint (code 141)... 101
typeDProcess (code 129).. 102
typeEndTrack (code 143) .. 103
typeInstrName (code 138).. 104
typeKeyOff (code 2) ... 105
typeKeyOn (code 1) ... 106
typeKeyPress (code 3).. 107
typeKeySign (code 147)... 108
typeLyric (code 139)... 109
typeMarker (code 140) .. 110
typeNonRegParam (code 132) .. 111
typeNote (code 0)... 112
typePitchWheel (code 7).. 113
typePrivate (code 19 to 127)... 114
typeProcess (code 128)... 115

typeProgChange (code 5) .. 116
typeQuarterFrame (code 130) .. 117
typeRegParam (code 133).. 118
typeReserved (code 149 to 254).. 119
typeReset (code 16)... 120
typeSeqName (code 137)... 121
typeSeqNum (code 134).. 122
typeSMPTEOffset (code 145) .. 123
typeSongPos (code 8)... 124
typeSongSel (code 9).. 125
typeSpecific (code 148)... 126
typeStart (code 11).. 127
typeStop (code 13) .. 128
typeStream (code 18) ... 129
typeSysEx (code 17) .. 130
typeTempo (code 144) ... 131
typeText (code 135)... 132
typeTimeSign (code 146) .. 133
typeTune (code 14)... 134

1

Introduction

2

About this manual

This manual is intended for developers who wish to write MIDI applications
using MidiShare. It contains a complete description of all the MidiShare
functions and data structures, as well as several examples of code. This manual
describes MidiShare 1.68 both for Apple Macintosh and Atari computers.

3

About MidiShare

MidiShare is a real-time multi-tasking MIDI operating system specially devised
for the development of musical applications. Its innovative features and careful
design (the result of 6 years of research and development), provide developers
with a powerful and efficient toolbox for developing MIDI applications.

MidiShare is based on a client/server model. It is composed of six main
components : an event memory manager, a time manager and synchronizer, a
task manager, a communication manager, an event and task scheduler and
Midi drivers.

Figure 1 The conceptual Model of MidiShare

Event & Task
Scheduler

Communication
Manager

Midi
Input Drivers

Time Manager
&

Synchronizer

Event Memory
Manager

Client
Appl.

#1

Client
Appl.

#n

Midi
Output Drivers

Task
Manager

.....

Midi Time Code

MidiShare Conceptual Model

High Level Musical Events

Up to 25
Midi po

The figure 1 shows the conceptual model of MidiShare :

¥ The Event and Task Scheduler is in charge of delivering scheduled events
and tasks at the right date. It allows events to be sent in the future as well as
functions to be called in the future. This ability to schedule function calls is a
very powerful mechanism which is particularly useful in real-time
applications where multiple tasks need to run in parallel with precise
timings. The scheduling algorithm used ensures a very low and constant
time overhead per event, even when the scheduler is heavily loaded.

¥ The Time Manager and Synchronizer maintains the current date of the
system. It offers 1ms resolution and supports accurate transparent SMPTE
synchronization.

¥ The Communication Manager routes events received from scheduler and
the input drivers to the client applications and output drivers according to
the connections set between applications.

¥ The Task Manager is in charge of calling the tasks delivered by the scheduler.

4

¥ The Event Memory Manager Êis a dynamic memory manager, specially
designed for real-time operations at interrupt level. It provides applications
with a convenient and efficient way for storing, copying and deleting
MidiShare events without using the host memory manager.

¥ The Midi Drivers are in charge of the physical Midi communications with
up to 256 Midi ports.

MidiShare avoids many of the complexities and limitations of other MIDI
Operating Systems and offers the advantages of code efficiency, portability and
simplicity of application development.

Communication is based on high level events instead of packets of Midi bytes.
These events are easier and faster to process than packets of Midi bytes. For
example, large system exclusive messages never need to be split into multiple
packets. They are sent, received and processed as a whole, like any other Midi
events. Events are not limited to strict MIDI messages, MidiShare offers full
support for Midi File 1.0 events. Lyrics, tempo changes and cue points for
example can be sent and received by client applications like Midi events. Future
versions of MidiShare will provide additional events for multimedia.

MidiShare allows multi-port configurations to be handled using upto 256 ports.
All MidiShare events are stamped with a full Midi device address defined by a
physical port number and a Midi channel. Client applications just need one
input and one output connection to communicate with all MIDI devices (up to
4096 devices).

All of the above and the fact that the full device address of an event is never
lost during inter-application communication makes application code
considerably simpler than with other MIDI operating systems.

It should also be noted that MidiShares internal buffers and queues are
dynamically sized avoiding the overflow problems encountered with other
systems.

Several mechanisms have been implemented to control the real time behavior
of MidiShare applications. Receive Alarms can be installed by client
applications to deal with incoming events when they occur (in real time at
interrupt level). A Context alarm can also be installed to inform applications of
changes in the MidiShare configuration. Function calls can be scheduled in
two ways : functions scheduled by MidiTask are done in true real-time, while
those scheduled by MidiDTask benefit from the scheduler, but are only pseudo
real-time as they are functions that canÕt be called at interrupt level (i.e. those
that use the host Memory Manager).

5

Overview of a MidiShare application

This section gives an overview of MidiShare functions as used by a typical
application.

Opening and Closing a MidiShare session

First of all, an application must make sure that MidiShare is installed in
memory, this check can be completed by the MidiShare function.

If MidiShare is installed then the function MidiOpen should be called to start a
MidiShare session. This allows MidiShare to record information relating to the
application context (i.e. its name, the value of A5 register, etc.) and to create a
reception FIFO and to attribute a unique reference number to the application.

Before closing, an application must call the counterpart MidiClose function,
giving its application reference number as an argument. MidiShare can thus be
aware of the precise number of active MidiShare applications. In theory, there
is no objection to an application performing several MidiOpen 's, under the
condition that it performs as many corresponding MidiClose's. In total, there
must not be more than 63 simultaneously open MidiShare applications .

As long as no MidiOpen's are performed, MidiShare is dormant and has no
effect on the operation of the computer. Following the first MidiOpen ,
MidiShare becomes active, it then creates a task which will be called by
interrupt every millisecond and initiates ACIA interruption vectors and
registers corresponding to the physical MIDI ports. MidiShare returns to its
dormant state after the last MidiClose is performed.

Communications and Connections

For an application to be able to transmit and receive events, it must first be
connected to one or more source and destination.

MidiShare is built around an internal communication mechanism which
allows the exchange of events in real-time between client applications. An
application can be thought of as a black box, receiving a flow of events at input
and producing a flow of events at output. These 'black boxes' can be freely
connected to others, thus forming an arbitrary complex network. This is one of
the major advantages of MidiShare, that it allows transparent, powerful
collaboration between applications that are otherwise totally independent.

MIDI hardware input and output is performed by a pseudo-application, which
is always refereed to as application number 0 and named 'MidiShare'. To
communicate with the 'outside world', your applications input and/or output
should be connected to this application.

The implementation of these connections is very simple. The MidiConnect
function allows the switching on or off connections between a source and
destination applications and the MidiIsConnected function gives the state (on
or off) of a connection. There are no restrictions in establishing connections, an
application can be source or destination of as many applications as you wish
and of course looping is possible.

6

In some special cases, it is important that an application can obtain information
regarding the other active MidiShare applications. The MidiCountAppls
function returns the number of open MidiShare applications. The
MidiGetIndAppl function returns the reference number of an application by
giving an order number (between 1 and the result of MidiCountAppls). It is
also possible to find the reference number of an application by name using the
MidiGetNamedAppl function. In the same way, knowing an application
reference number, it is possible to find its name using the MidiGetName
function. And last, the MidiSetName function allows change of an applications
name.

When writing 'meta-applications' for the management of connections
requiring information on context modifications in MidiShare (opening of new
applications, changing connections, etc.) , all that is required is the definition of
a context alarm using the MidiSetApplAlarm and MidiGetApplAlarm
functions. This alarm function will be automatically called by MidiShare to
inform the application of all the occurred context changes.

Sending and receiving

Once connections have been established, an application can send and receive
MIDI events. Each application owns a reception FIFO in which MidiShare puts
a copy of received events. These events may come from other applications or
from the different MIDI ports in active use. MidiShare can in theory handle up
to 256 ports. The implementation of MIDI ports is controlled by the
MidiSetPortState and MidiGetPortState routines, these functions must be
used with caution since they affect all applications.

The MidiCountEvs function allows an application at any time to know the
number of events waiting in its reception FIFO. This number of events is only
limited by the amount of memory available to MidiShare. The available events
are picked up by repeated calls to the MidiGetEv function. The MidiAvailEv
function is similar, except it allows the reading of a received event while
leaving it in the FIFO. The MidiFlushEvs function eliminates all the events on
wait in the reception FIFO.

Events received by applications are duplicates, the application can therefore
freely dispose of them without any repercussion on other applications.
However, an application must not forget to free them when it no longer needs
them.

Each application can select the events it receives by using a filter. The filtering
process is local to the application and has no influence on the events received
by the other applications. The implementation of these filters is achieved by
two routines : MidiSetFilter and MidiGetFilter.

MidiShare drives an internal absolute clock of 32 bits which is automatically
switched on with the first MidiOpen and keeps running until the last
MidiClose. This clock is used to date (in milliseconds) all the received events,
as well as to specify the sending dates of events to be transmitted. Moreover, it
provides all the applications with an absolute time reference. Its value can be
read by the MidiGetTime function.

Three functions facilitate the transmission of events. The MidiSendIm function
allows the immediate transmission of an event and the MidiSend and
MidiSendAt functions allow time delayed transmission, MidiShare
automatically managing the scheduling of the transmission time.

7

(thanks to this mechanism, applications can plan transmissions at millisecond
accuracy up to many days in advance.)

Once an event is transmitted (by the means of MidiSend, MidiSendAt or
MidiSendIm), it is no longer accessible by the application. This event must no
longer be refereed to, as to do so would cause irreparable damage to
MidiShare's event organization.

Event management

The memory management of a standard application is generally performed by
the computers 'Memory Manager' (MM). The MM deals with dynamic
allocation, freeing memory blocks of arbitrary length, and memory compacting
when necessary (in the case of excessive fragmentation of memory). A
traditional MM is unsuitable for use in a real time context for the following
reasons:

¥ Only large memory blocks can be allocated efficiently. For example, the
Macintosh MM has an overhead of several bytes per allocated blocks, which
is prohibitive for the very small groups of bytes associated with MIDI events.

¥ The allocation time of a block is not constant, but depends on several factors,
one of which being the fragmentation state of the memory. Allocation times
can be very long if memory needs to be compacted and therefore a traditional
MM cannot guarantee a response time.

¥ A traditional MM is not re-entrant, therefore no routine under interruption
can use it either directly or indirectly, without disorganizing the memory
space.

To overcome these short-comings, MidiShare possess its own memory
manager, which is adapted to the Midi event management and is available
under interruption.

MidiShare drives a group of events common to all the applications. Each event
has compulsory fields (date, channel, port, type, etc.) and variable fields that
depend of its type.

Allocation is performed by the MidiNewEv function which returns an event of a
suitable type. The counterpart de-allocation is done by the MidiFreeEv
function. Another way of allocating an event is to duplicate an existing event
by the MidiCopyEv function.

It is possible at any time to discover the available remaining event space, by the
MidiFreeSpace function.

Access to the common event fields can be done directly, but access to the
variable fields is achieved through the MidiSetField and MidiGetField
functions.

Some categories of events do not have a fixed number of fields, for example
System Exclusive messages, in this case the MidiCountFields function returns
the number of fields in the variable length event and the MidiAddField
function allows the addition of a field at the tail of the variable length event.

For some special applications, it may be necessary to access the basic functions
of the memory manager. All the events managed by MidiShare are
implemented in fixed-size cells (16 bytes). Most events need just one cell,
others like the System Exclusive use a variable number of linked cells. Most
applications normally do not have to worry about storage 'details',
nevertheless, two functions are provided for low level memory management.

8

The first one, MidiNewCell, allows to allocate a simple cell. The second one,
MidiFreeCell, operates in reverse and de-allocates a cell.

Sequence management

MidiShare provides basic functionalities for the managing of sequences of
time ordered events. The MidiNewSeq function allocates a new sequence,
empty at the start and the MidiAddSeq function inserts an event into the
sequence, maintaining the time order.

The MidiApplySeq function is an iterating function which allows the
processing of a sequences events, by a user defined function, the address of
which is passed as a parameter.

The MidiClearSeq function flushes the contents of a sequence and the
MidiFreeSeq function frees the sequence events.

Real time tasks

The MidiShare scheduling mechanism is based around the concept of alarms.
An alarm is a function whose address is sent to MidiShare by an application,
MidiShare will then call this function in real time to indicate the occurrence of
an event, even if the application is in interrupt.

Each application can define two categories of alarms, the first is defined by the
MidiSetApplAlarm function, this warns of any change in the global context of
MidiShare (see paragraph "Communications and connections"). The second
category is defined by the MidiSetRcvAlarm function which informs of the
presence of new events in the reception FIFO. This alarm is always called under
interruption, and therefore, it must not use the Macintosh Memory Manager
either directly or indirectly. However, it can have a free access to all the
MidiShare functions (apart from MidiOpen or MidiClose) and it may also
access the global variables of the application, as before the call, MidiShare
restores its context register.

Macintosh desk accessories cannot have global variables, so to make up for this
drawback the MidiSetInfo routine allows each application to define a data
area. The area pointer remains accessible by the MidiGetInfo function, even
during alarms, and it can also be used for global data areas for desk accessories
and other application.

Once the RcvAlarm is set, the application can organise its real-time tasks
utilizing its private FIFO. As opposed to traditional MIDI events, private events
are messages that an application sends to itself, an application generally makes
use of these to remember that a task has to be done at a precise date.

When the date of a private event falls, MidiShare puts the event into the
applications reception FIFO, where it waits to be picked up and handled in the
same way as MIDI events.

MidiShare implements a second mechanism to manage tasks. This is a time-
delayed function call using MidiTask (or MidiCall) and the MidiDTask
functions. To achieve this call, MidiShare collects the call arguments, as well as
the functions address to be called and triggers a special event (typeProcess or
typeDProcess). When a typeProcess event falls MidiShare restores the
application context and proceeds to the call the function. However, when a
typeDProcess event falls, the function is not processed immediately, but
placed in a waiting list belonging to the application.

9

The MidiCountDTasks allows an application to find the number of tasks
currently waiting to be executed, they can then be executed when required
using MidiExec1DTask which executes the next task on wait. (Note that actual
execution must be initiated by the application)

As the MidiTasks are processed under interruption, they must not call the
operating system either directly or indirectly. The MidiDTasks allow a by-pass of
this obstacle since the application triggers their processing (generally in the
main loop).

Under certain circumstances, 'forgetting' an already launched but not yet
processed MidiTask or MidiDTask, can be useful. The MidiForgetTask
function is used for this purpose. Also an applications MidiDTask waiting list
can be deleted by MidiFlushDTasks function.

In order to simplify communication between application tasks and to the
manage sharing of variables, two non-interruptable, pointer-handling routines
are provided. The MidiReadSync function reads and sets to NIL the value at a
memory address, and the MidiWriteSync function updates the value of an
address only if its current value is NIL.

Midi Time Code Synchronisation

MidiShare can be synchronised to an external Midi Time Code (MTC) using the
MidiSetSyncMode function. MidiSetSyncMode takes a parameter describing
the chosen synchronisation mode (internal or external) and the
synchronisation input port to be used. The synchronisation mode is global and
it affects all MidiShare applications. The function MidiGetSyncInfo provides
information regarding the synchronisation process.

When the synchronisation mode is set to internal (the default mode),
MidiShare is driven by an internal interrupt every millisecond. (the "size" of a
MidiShare time unit is one millisecond) The function MidiGetTime gives
MidiShare's internal time, which is the time elapsed since the very first
MidiOpen, expressed in milliseconds.

When the synchronisation mode is set to external, MidiShare looks for an
incoming MTC. When enough MTC's are detected, MidiShare becomes locked
to the signal. It warns all the MidiShare applications, by calling their
ApplAlarm, if any, with the code using MidiSyncStart. A typical sequencer
might use this information to start playing a sequence according to the position
of the tape. The function MidiGetExtTime returns the position of the tape in
milliseconds.

When an incoming MTC is no longer detected, MidiShare becomes unlocked,
it automatically adjusts its time unit to one millisecond and again informs the
MidiShare applications via their ApplAlarm with the code MidiSyncStop. A
typical sequencer application may for example decide to stop playing its
sequences in this situation.

While MidiShare is locked, it maintains a constant offset between its internal
time and the external time (the time of the tape), by automatically adjusting the
size of the time unit to follow the speed variations of the incoming MTC. The
size of the MidiShare time unit will be exactly one millisecond when the MTC
runs at its nominal speed, it will increase when the MTC slows down and
decrease when the MTC's speed increases. For example with an MTC format of
25 frames/second, one frame represents 40 milliseconds (1000/25). In this case
MidiShare will adjust the size of its time unit in order to always have 40 time
units per frame whatever the actual speed of the incoming MTC. Consequently,

10

from the point of view of a MidiShare application, the duration of one frame at
25 frames/seconds will always be 40 milliseconds.

The function MidiGetExtTime returns the external time (the time of the tape
expressed in milliseconds).

While MidiShare is locked :

MidiGetTime() - MidiGetExtTime() == constant offset

The difference between MidiShare's internal time and the tape time expressed
in millisecond is a constant. Two functions are provided to convert between
external and internal time MidiInt2ExtTime and MidiExt2IntTime :

MidiInt2ExtTime(MidiGetTime()) == MidiGetExtTime()

MidiExt2IntTime(MidiGetExtTime()) == MidiGetTime()

Two additional functions, MidiTime2Smpte and MidiSmpte2Time , are
provided to make conversions between time expressed in millisecond and
SMPTE time locations. For example :

MidiTime2Smpt (MidiGetExtTime(), 3, &loc)

This will set loc with the current SMPTE location of the tape using SMPTE
format 3 (30 frames / seconds).

These functions can be used to convert SMPTE locations from one format to
another. For example suppose we want to derive a SMPTE location from a
current 30 drop frame format, we can write :

MidiTime2Smpte(MidiSmpte2Time (&loc), 2, &loc);

where 2 means 30 drop frame.

11

Some examples

We give here some very simple examples of MidiShare programs. In order to
keep the listings short they have no 'user-interface', just a command line like
in a traditional UNIX environment. They where written for the Macintosh but
they can be easily adapted for other computers. The specific differences with the
Macintosh is that the string arguments to MidiShare functions are in Pascal
format (starting with \p like in Ò\pExample1Ó) and the user defined functions
(like tasks and alarms) that are passed to MidiShare functions are prefixed with
the PASCAL keyword. If you run these examples on another computer, you need
to remove both the \p and the PASCAL keyword.

Example 1 : the shortest MidiShare program

Program example are often too long to type so here is the shortest MidiShare
program one can write. It starts a MidiShare session using the MidiOpen
function and then closes the session using the MidiClose function, thatÕs all.

Listing 1

#include <MidiShare.h>

main()
{

short myRefNum;

myRefNum = MidiOpen("\pExample1");
MidiClose(myRefNum);

}

Example 2 : still short but safer

The previous example was not very safe. Usually you need first to test if
MidiShare is available, then check its version number and finally test if you
have succeeded in opening a MidiShare session.

Listing 2

#include <stdio.h>
#include <stdlib.h>
#include <MidiShare.h>

main()
{

short myRefNum;

if (! MidiShare()) {
printf("error : MidiShare not available\n");
exit(0);

}

if (MidiGetVersion() < 168) {
printf("error : MidiShare version 1.68 or greater required\n");
exit(0);

}

12

myRefNum = MidiOpen("\pExample2");

if (myRefNum < 0) {
printf("Unable to open a MidiShare session (code %d)\n",

myRefNum);
exit(0);

}

MidiClose(myRefNum);
}

Example 3 : waiting

In this example we spend 3 seconds printing dots. The checking of the previous
example has been removed for sake of simplicity.

Listing 3

#include <stdio.h>
#include <stdlib.h>
#include <MidiShare.h>

main()
{

short myRefNum;
long stopdate;

myRefNum = MidiOpen("\pExample3");
stopdate = MidiGetTime() + 3000;

printf("waiting");
while (MidiGetTime() < stopdate) {

printf(".");
}
printf("\n");

MidiClose(myRefNum);
}

Example 4 : multitasking

The previous example used a very trivial method of time handling. In this
example we use a method in which several tasks are scheduled in the future.
The PrintTask function is used as a repetitive task to print characters. The
StopTask is used to inform the program stop.

Listing 4

#include <stdio.h>
#include <stdlib.h>
#include <MidiShare.h>

long gStopflag;

pascal
void PrintTask (long dt, short ref, long c, long delay, long a3);

pascal
void StopTask (long dt, short ref, long a1, long a2, long a3);

13

main()
{

short myRefNum;
short i;
long dt;

myRefNum = MidiOpen("\pExample4");
dt = MidiGetTime();

/* schedule the stop task */
gStopflag= 0;
MidiTask(StopTask, dt+6150, myRefNum, 0, 0, 0);

/* schedule the print task with different */
/* delays and characters to print */
MidiDTask(PrintTask, dt+100, myRefNum, ' ', 100, 0);
MidiDTask(PrintTask, dt+201, myRefNum, 'H', 200, 0);
MidiDTask(PrintTask, dt+302, myRefNum, 'E', 300, 0);
MidiDTask(PrintTask, dt+403, myRefNum, 'L', 400, 0);
MidiDTask(PrintTask, dt+604, myRefNum, 'L', 600, 0);
MidiDTask(PrintTask, dt+1005, myRefNum, 'O', 1000, 0);

printf("Running :\n");

while (gStopflag == 0) {
for (i = MidiCountDTasks(myRefNum); i; i--) {

MidiExec1DTask(myRefNum);
}

}

printf("\nStopped\n");

MidiClose(myRefNum);
}

pascal
void PrintTask (long dt, short ref, long c, long delay, long a3)
{

fputc(c, stdout);
fflush(stdout);
MidiDTask(PrintTask, dt+delay, ref, c, delay, 0);

}

pascal
void StopTask (long dt, short ref, long a1, long a2, long a3)
{

gStopflag= 1;
}

In the above example you may have noticed that two different functions,
MidiTask and MidiDTask, are used to schedule function calls.

Function calls scheduled with MidiTask are automatically executed in real time
at interrupt level by MidiShare. These functions must be very fast (< 1ms) and
must not call any slow or non-reentrant Operating System functions.

Function calls scheduled with MidiDTask behaves differently. They are not
executed automatically but stored in a special list of pending tasks. The
application can periodically (for example in its main event loop) execute
pending tasks by calling MidiExec1DTask as in this example. In this case slow or
non-reentrant functions can be safely called within the scheduled function.

In both cases the scheduled functions can use global variables, as the A5 register
of the application is automatically restored by MidiShare before calling the
scheduled function.

14

Example 5 : real-time event processing

In this example we see how to install a receive alarm to process incoming
events in real time. The processing is very simple, received events are delayed
accordingly to their Midi channel (delay = channel number * 100ms).

Listing 5

#include <stdio.h>
#include <stdlib.h>
#include <MidiShare.h>

pascal void DelayRcvAlarm (short ref);

void main()
{

short myRefNum;
short i;
long dt;

/* Open the MidiShare session */
myRefNum = MidiOpen("\pExample5");

/* Install the receive alarm */
MidiSetRcvAlarm(myRefNum, DelayRcvAlarm);

/* Connect the application to MidiShare physical I/Os */
/* the 3 arguments are the reference number of the source */
/* the reference number of the destination
MidiConnect (myRefNum, 0, 1);
MidiConnect (0, myRefNum, 1);

printf("Now Midi events are delayed\n");
printf(" <type the ENTER key to stop the program>\n");

getc(stdin);

printf("\nStopped\n");

/* close the MidiShare session */
MidiClose(myRefNum);

}

pascal void DelayRcvAlarm (short ref)
{

MidiEvPtr e;

while (e = MidiGetEv(ref)) {
Date(e) += Chan(e)*100;
MidiSend(ref, e);

}
}

The receive alarm is called at interrupt level every time new events are
received by the application. The argument passed to the receive alarm is the
reference number of the application.

15

Example 6 : a small sequencer

This example implements a small sequencer able to record and play back MIDI
events.

Listing 6

#include <stdio.h>
#include <stdlib.h>
#include <MidiShare.h>

long gStopFlag;
MidiSeqPtr gSequence;

pascal
void record (short aRefNum);

pascal
void play (long time, short refnum, long nextEv, long unused1, long unused2);

void main ()
{

short myRefNum;

/* OPEN A MIDISHARE SESSION */
myRefNum = MidiOpen("\pExample6");

printf("type <ENTER> to start recording\n");
getc(stdin);

/* START RECORDING */
gSequence = MidiNewSeq(); /* sequence for recording */
MidiSetRcvAlarm(myRefNum, record); /* set rcv alarm for rec */
MidiConnect(0, myRefNum, true); /* connect input */

printf("\n\n Now recording.... \n");
printf("(type <ENTER> to stop recording and play back)\n");
getc(stdin);

/* PLAY BACK */
MidiConnect(0, myRefNum, false); /* disconnect input */
MidiConnect(myRefNum, 0, true); /* connect output */
MidiSetRcvAlarm(myRefNum, 0); /* remove the rcv alarm */
play(MidiGetTime(), myRefNum, (long) FirstEv(gSequence), 0, 0);

printf("\n\nNow playing back....\n");
printf("(type <ENTER> to stop and exit program)\n");
getc(stdin);

/* STOP PLAY BACK AND EXIT */
gStopFlag = 1; /* set to stop playing */
MidiFreeSeq(gSequence); /* free the sequence */
MidiClose(myRefNum); /* close the session */

}

/* THE RECEIVE ALARM TO RECORD EVENTS */
pascal void record (short ref)
{

MidiEvPtr e;

while (e = MidiGetEv(ref)) { /* get received events */
MidiAddSeq(gSequence,e); /* store into the seq */

}
}

/* THE TASK TO PLAY BACK EVENTS */

16

pascal void play (long time, short refnum, long nextEv,
long unused1, long unused2)

{
long date;
MidiEvPtr e;

/* If we have not been stopped */
/* and still have events to play */
if (!gStopFlag && nextEv) {

e = (MidiEvPtr) nextEv;
date = Date(e);

/* for all the events at the same date */
while (e && Date(e) == date) {

MidiSendIm(refnum, MidiCopyEv(e)); /* Send a copy */
e = e->link; /* Go to next one */

}

/* If we still have events to play in future? */
if (e) {

/* schedule the play task again */
MidiTask(play, Date(e)-date+time, refnum, (long)e, 0, 0);

}
}

}

17

Reference

18

MidiShare Events

The MidiShare communication is based on events. An event is a time-stamped
data object that can be sent or received by client applications.

Typology

The table 1 below represents the different types of events handled by MidiShare.
This typology contains all of the standard Midi messages, plus specific messages
such as the typeNote corresponding to a note with its duration, typeStream
which corresponds to a series of arbitrary bytes (possibly including data and
status codes), and typePrivate which is used for an applications private
messages.

All these codes may be used by the MidiNewEv function to allocate an event of
the desirable type and are accessed by the evType field of an event.

19

Table 1

Name Code Comment

typeNote 0 pitch, velocity and duration (16bit)
typeKeyOn 1 pitch and velocity
typeKeyOff 2 pitch and velocity
typeKeyPress 3 pitch and after touch pressure
typeCtrlChange 4 control and value
typeProgChange 5 program change
typeChanPress 6 channel after touch pressure
typePitchWheel 7 Lsb and Msb

typeSongPos 8 Lsb and Msb
typeSongSel 9 song selection
typeClock 10 -
typeStart 11 -
typeContinue 12 -
typeStop 13 -

typeTune 14 -
typeActiveSens 15 -
typeReset 16 -

typeSysEx 17 data1..dataN
typeStream 18 byte1..byteN

typePrivate 19..127 arg1, arg2, arg3, arg4
typeProcess 128 arg1, arg2, arg3, arg4
typeDProcess 129 arg1, arg2, arg3, arg4
typeQFrame 130 msg type (0..7) and value

TypeCtrl14b 131
TypeNonRegParam 132
TypeRegParam 133

TypeSeqNum 134 extended types from MidiFile 1.0
TypeText 135
TypeCopyright 136
TypeSeqName 137
TypeInstrName 138
TypeLyric 139
TypeMarker 140
TypeCuePoint 141
TypeChanPrefix 142
TypeEndTrack 143
TypeTempo 144
TypeSMPTEOffset 145

TypeTimeSign 146
TypeKeySign 147
TypeSpecific 148

TypeReserved 149..254
TypeDead 255 -

20

Events Internal structure

The MidiShare memory management is organised around fixed-sized cells (16
bytes). All the events are composed of a header cell that may be followed by one
or more extension cells. Figure 1 describes the different fields forming the
common cell :

The Link field is used internally for linking cells.

The Date field contains the falling date of the event (from 0 to 231 - 1).

The refNum field contains the application reference of the event sender.

The evType field contains the type of the event.

The Port field contains the destination MIDI port of the event.

The Chan field contains the MIDI channel of the event.

These six fields are always present and always have the same meaning,
whatever the type of the event, and they can be accessed directly. The following
Info part of an event contains special fields who's purpose depends on the
event type. In some cases, the Info part contains a pointer to one or several
extension cells. Direct access to these special fields is possible provided one takes
into account the different memory structures. Otherwise the special functions
MidiGetField and MidiSetField can be used, these hide the internal event
structure and allow direct access to the special fields by specifying an index
between 0 and MidiCountFields() - 1.

Figure 1 : Common event structure

link

date

ref type port chan

info

Midi messages with 0, 1 or 2 data bytes, use only one cell, as shown in figure 2.
These two supplementary fields are accessible by the MidiGetField and
MidiSetField functions with index 0 and 1.

Figure 2 : Most MidiShare events need just one cell. Data bytes are in d0
and d1.

link

date

ref type portchan

d0 d1 ---

Notes (figure 3) have three more fields at their disposal : 0, 1 and 2 for pitch,
velocity and duration. The access functions MidiGetField and MidiSetField
automatically selects the 8, 16 or 32 bit fields.

21

Figure 3 : MidiShare notes are events with pitch, velocity and a 16-bits
duration

link

date

ref type portchan

p v dur

System Exclusive type messages or Stream type messages include variable
number of fields. They use the structure described on figure 4, built with
elementary cells linked one to another. The MidiGetField and MidiSetField
functions are able to follow the links giving access to data. The MidiAddField
function allows the addition of fields at the tail of the message.

d0 d1

d11

d2 d3

d4 d5 d6 d7

d8 d9 d10

d12 d13 d14 d15

d16 d17 d18 d19

d20 d21 d22 d23

d36 d37 d38 d39

d40

link

date

ref Sys
ex

portchan

size
5

Figure 4 : Events of variable length (here a system exclusive) use multiple
cells linked together.

Private or internal type events need the use of one extension cell. They are
composed of four 32 bit fields (from 0 to 3) being able to contain any
information left to the choice of the application.

22

Midi Error Codes

Table 2 List of the error codes returned by some MidiShare functions.

Name Code Comment

MIDIerrSpace -1 No more space available

MIDIerrRefNum -2 Bad reference number

MIDIerrBadType -3 Bad type of event

MIDIerrIndex -4 Wrong field index of access to an event

23

Midi Change Codes

When an application needs to know about context modifications, for example
the opening and closing of applications, opening and closing of midi ports and
changes in connections between applications, it can install an ApplAlarm (see
MidiSetApplAlarm). This ApplAlarm function is then called by MidiShare
every time a context modification occurs and it is passed a 32-bits code
describing the modification. The hi 16-bits part of this code is the refNum of the
application involved in the context modification, the low 16-bits part describe
the type of change as listed below.

Table 3 List of the change codes sent by MidiShare to ApplAlarm

Name Code Mac Code Atari Comment

MIDIOpenAppl 1 - A new application is opened

MIDICloseAppl 2 - An application is closed

MIDIChgName 3 - An application name is changed

MIDIChgConnect 4 - A connection is changed

MIDIOpenModem 5 - The Modem port is opened

MIDICloseModem 6 - The Modem Port is closed

MIDIOpenPrinter 7 - The Printer port is opened

MIDIClosePrinter 8 - The Printer Port is closed

MIDISyncStart 9 550 Start of synchronization

MIDISyncStop 10 551 End of synchronization

MIDIChangeSync 11 552 The synchronization mode is
changed

24

MidiAddField

DESCRIPTION

Adds a field at the tail of an event of variable length (for example a System
Exclusive or a Stream) and assigns to it the value transmitted as a parameter.

PROTOTYPE

C Atari void MidiAddField (e, v);
C Mac ANSI pascal void MidiAddField (MidiEvPtr e, long v);
Pascal Mac procedure MidiAddField (e:MidiEvPtr; v:longint);

ARGUMENTS

e : a MidiEvPtr, it is a pointer to the event to be modified.

v : a 32-bit integer, it is the value of the field to be added. This value is always
a long for a purpose of uniformity, but it is internally translate to the right size
(a byte in this case). The value of v is actually between 0 and 127 for a System
Exclusive and between 0 and 255 for a Stream.

EXAMPLE 1 (ANSI C)
Creates the System Exclusive message "F0 67 18 05 F7"

MidiEvPtr e;

e = MidiNewEv (typeSysEx);
MidiAddField (e, 0x67L);
MidiAddField (e, 0x18L);
MidiAddField (e, 0x05L);

Note : the leading F0 byte and the tailing F7 byte are automatically added by
MidiShare when the message is transmitted. They must not be added by the
user.

EXAMPLE 2 (ANSI C)
Creates the Stream message "F8 F0 67 F8 18 05 F7" that mixes two MidiClock
messages (F8) into a System Exclusive.

MidiEvPtr e;
long i;

e = MidiNewEv(typeStream);
MidiAddField (e, 0xF8L);
MidiAddField (e, 0xF0L);
MidiAddField (e, 0x67L);
MidiAddField (e, 0xF8L);
MidiAddField (e, 0x18L);
MidiAddField (e, 0x05L);
MidiAddField (e, 0xF7L);

 Note : Streams are sent without any transformation (no running status, no
check of coherence). They can be used for example to send a long system
exclusive split into several chunks with a little delay between. They can also be
used as in the example to mix real time messages in a long system exclusive for
maintaining synchronization.

25

EXAMPLE 3 (ANSI C)
Create a system exclusive message from an array of values:

char tab[3] = {10, 20, 30};
MidiEvPtr aSysEx;

MidiEvPtr Array2SysEx(short len, char* vect, short chan, short port)
{

MidiEvPtr e;

e = MidiNewEv(typeSysEx); /* a new, empty sysex */
Chan(e) = chan; Port(e) = port; /* set destination info */
while (lenÑ) MidiAddField(e, *vect++); /* append fields */
return e;

}

aSysEx = Array2SysEx(3, tab, 0, 0);

26

MidiAddSeq

DESCRIPTION

Inserts an event in to a sequence while maintaining the dates in time order.

PROTOTYPE

C Atari void MidiAddSeq (s, e);
C Mac ANSI pascal void MidiAddSeq (MidiSeqPtr s, MidiEvPtr e);
Pascal Mac procedure MidiAddSeq (s:MidiSeqPtr; e:MidiEvPtr);

ARGUMENTS

s : a MidiSeqPtr, it is a pointer to the sequence to be modified.

e : a MidiEvPtr, it is a pointer to the event to be added.

EXAMPLE (ANSI C)
Creates a sequence of 10 midi clock every 250 ms.

MidiSeqPtr s;
MidiEvPtr e;
long d;

s = MidiNewSeq();
for (d=0; d< 2500; d+=250)
{

e = MidiNewEv (typeClock);
Date(e) = d;
MidiAddSeq (s, e);

}

N o t e : if you are concerned about application speed, you must realise that
sequences are single linked lists of time ordered events, so it takes more time
for MidiAddSeq to insert an event in the middle of a sequence than at either at
the beginning or the end.

27

MidiApplySeq

DESCRIPTION

This function is an iteration. It allows an application apply a function to all the
events of a sequence.

PROTOTYPE OF MIDIAPPLYSEQ

C Atari void MidiApplySeq (s, MyProc);
C Mac ANSI pascal void MidiApplySeq (MidiSeqPtr s, ApplyProcPtr MyProc);
Pascal Mac procedure MidiApplySeq (s:MidiSeqPtr; Myproc:ApplyProcPtr);

ARGUMENTS OF MIDIAPPLYSEQ

s : a MidiSeqPtr, is a pointer to the sequence to be browsed;

MyProc : a ApplyProcPtr is the address of the function to apply to each
event of the sequence.

PROTOTYPE OF MYPROC

C Atari void MyProc (e);
C Mac ANSI pascal void MyProc (MidiEvPtr e);
Pascal Mac procedure MyProc (e:MidiEvPtr);

ARGUMENT OF MYPROC

e : a MidiEvPtr, is a pointer to the current event in the sequence.

EXAMPLE (ANSI C)
Transpose a sequence by one octave.

MidiSeqPtr s;

void TransposeOctave (MidiEvPtr e)
{

if (EvType(e) == typeNote ||
EvType(e) == typeKeyOn ||
EvType(e) == typeKeyOff ||
EvType(e) == typeKeyPress)

{
Pitch(e) += 12; /* normally one must check boundaries */

}
}
....

MidiApplySeq(s, TransposeOctave);

Note for Mac users : MidiShare was originally developed in Pascal on the
Macintosh. Therefore, in C, all functions passed as arguments of a MidiShare
function must be declared as Pascal. In the previous example, TransposeOctave
should be declared as :
pascal void TransposeOctave (MidiEvPtr e)

28

MidiAvailEv

DESCRIPTION

Gives a pointer to the first event at the head of the reception FIFO, without
extracting it. MidiAvailEv can be used if an application wants to test the first
event in its reception FIFO, without processing it.

PROTOTYPE

C Atari MidiEvPtr MidiAvailEv (refnum) ;
C Mac ANSI pascal MidiEvPtr MidiAvailEv (short refnum) ;
Pascal Mac Function MidiAvailEv (refnum: integer): MidiEvPtr;

ARGUMENTS

refNum : a 16-bit integer, it is the reference number of the application.

RESULT

The result is a MidiEvPtr, a pointer to the first event in the reception FIFO, or
NIL if the reception FIFO is empty.

EXAMPLE (ANSI C)
A function that calculates for how long events have been waiting in the
reception FIFO

long CalculateWaitTime (short refNum)
{

MidiEvPtr e;

if (e = MidiAvailEv (refNum))
return MidiGetTime() - Date(e);

else
return 0;

}

Note : as the event is still in the reception FIFO it must not be destroyed or
transmitted. It can just be tested or duplicated.

29

MidiCall

DESCRIPTION

Initiates a time delayed function call. When the calling date falls, the call is
automatically realized by MidiShare under interrupt. MidiCall is presented here
for historical reasons, and MidiTask is a better choice of code for completing this
task.

PROTOTYPE OF MIDICALL

C Atari void MidiCall (MyProc, date, refNum, a1, a2, a3);
C Mac ANSI pascal void MidiCall (TaskPtr MyProc, long date, short refNum,

long a1, long a2, long a3);
Pascal Mac Procedure MidiCall (MyProc:TaskPtr; date:longint;

refNum:integer; a1,a2,a3: longint);

ARGUMENTS OF MIDICALL

MyProc : a TaskPtr, is the address of the function to be called.

date : a 32-bit integer, is the date at which this call is scheduled.

refNum : a 16-bit integer, it is the reference number of the application.

a1,a2,a3 : are 32-bit integers left at the userÕs disposal, as arguments of MyProc

PROTOTYPE OF MYPROC

C Atari void MyProc (date, refNum, a1, a2, a3);
C Mac ANSI pascal void MyProc (long date, short refNum, long a1, long
a2, long a3);
Pascal Mac procedure MyProc (date:longint; refNum:integer; a1,a2,a3:

longint);

ARGUMENT OF MYPROC

date : a 32-bit integer, is the date of the call .

refNum : a 16-bit integer, is the reference number of the application.

a1,a2,a3 : are 32-bit integers that can be used by the application.

EXAMPLE (ANSI C)
Send periodically (every 10 ms), a MidiClock message for 30 seconds.

void MyClock (long date, short refNum, long delay, long limit, long a3)
{

if (date < limit)
{

MidiSendIm (refNum, MidiNewEv(typeClock));
MidiCall (MyClock, date+delay, refNum, delay, limit, a3);

}
}
...........
long d;
...........
d = MidiGetTime();
MyClock (d, myRefNum, 10L, d+30000L, 0L); /* Start now the clock for 30s */

30

Note : As this call occurs under interruptions, a few precautions should be
taken when using it, for example not invoking non-reentrant routines of the
Operating System (such as the Memory Manager on the Macintosh for
example). However, most of the MidiShare functions are reentrant, they can be
used safely under interruption.

Note for Mac users : MidiShare was originally developed for Pascal on the
Macintosh. Therefore, in C, all functions passed as arguments for a MidiShare
function should be declared as Pascal. In the previous example, MyClock
should be declared as :
pascal void MyClock(long date, short refNum, long delay,

long limit, long a3);

31

MidiClearSeq

DESCRIPTION

Frees the content of a sequence. MidiClearSeq de-allocates all the events of the
given sequence, consequently this sequence becomes empty.

PROTOTYPE

C Atari void MidiClearSeq (s);
C Mac ANSI pascal void MidiClearSeq (MidiSeqPtr s);
Pascal Mac procedure MidiClearSeq (s:MidiSeqPtr);

ARGUMENTS

s : a MidiSeqPtr,is a pointer on a sequence whose events are to be freed.

EXAMPLE (ANSI C)
Suppress all but the first event of a sequence.

void ClearAllButFirst (MidiSeqPtr s)
{

MidiEvPtr e;

if (s && First(s)) /* Check a non empty sequence */
{

e = MidiCopyEv(First(s)); /* make a copy of the first event */
MidiClearSeq(s); /* clear the content of the sequence */
MidiAddSeq(s, e); /* add the event to the empty sequence */

}
}

Note : a sequence consist of a header of 4 pointers. The first one points to the
first event of the sequence. The second one points to the last event. The other
two pointers are reserved for future extensions and must be NIL. In an empty
sequence, the pointers to the first and last events are NIL.

32

MidiClose

DESCRIPTION

This is used for closing of a MidiShare application. Every opening of MidiShare
with MidiOpen must be matched by a call to MidiClose, so that MidiShare can
keep track of active applications and release the corresponding internal data
structures. All the MidiShare applications owning a "context alarm" will be
informed of this closing.

PROTOTYPE

C Atari void MidiClose (refNum);
C Mac ANSI pascal void MidiClose (short refNum);
Pascal Mac procedure MidiClose (refNum:integer);

ARGUMENTS

refNum : a 16-bit integer, it is the reference number of the application, given
by the corresponding MidiOpen.

EXAMPLE (ANSI C)
A do-nothing MidiShare application.

#include MidiShare.h
#include <stdio.h>

short myRefNum;

main()
{

if (! MidiShare()) exit(1); /* Check MidiShare loaded */
myRefNum = MidiOpen("Sample"); /* Ask for a reference number*/
if (myRefNum < 1) exit(1); /* Check MidiOpen success */

/* Print the reference number */
printf("refNum : %i \n", myRefNum);
MidiClose(myRefNum); /* And close */

}

Note : MidiClose takes care of deleting all the connections of the concerned
application. Therefore if an application sends some Midi events and without
delay, does a MidiClose, these sent events will probably not be actually
transmitted. They just go back to the MidiShare Memory Manager.

Note for Mac users : MidiShare was originally developed for Pascal on the
Macintosh. Therefore, in C, all strings passed as arguments of a MidiShare
function must be Pascal strings. In the previous example, one must write :

myRefNum = MidiOpen("\pSample");

33

MidiConnect

DESCRIPTION

Connects or disconnects two applications. The MidiConnect function allows the
switching on or off of a connection between a source application and a
destination application. There is no restrictions in the establishing of these
connections, an application can be the source or destination of as many other
applications as you wish. Loops are permitted.

PROTOTYPE

C Atari void MidiConnect (src,dest,state);
C Mac ANSI pascal void MidiConnect (short src,short dest,boolean state);
Pascal Mac Procedure MidiConnect (src, dest:integer; state:boolean);

ARGUMENTS

src : a 16-bit integer, is the reference number of the source application.

dest : a 16-bit integer, is the reference number of the destination
application.

state : a boolean, indicates if a connection must be switched on (True) or off
(False).

EXAMPLE (ANSI C)
Open a MidiShare application and connect it to the physical Midi inputs and
outputs.

#include MidiShare.h
#define PHYSMIDI_IO 0 /* The MidiShare physical Midi I/O ports*/

Main()
{

short myRefNum;

myRefNum = MidiOpen("MidiSample");
MidiConnect (PHYSMIDI_IO, myRefNum, TRUE); /* to receive events */
MidiConnect (myRefNum, PHYSMIDI_IO, TRUE); /* to transmit events */

/* */

MidiClose(myRefNum);
}

Note : the physical Midi inputs and outputs are represented by the pseudo
application called "MidiShare" with a reference number of 0 (zero). This
pseudo application is automatically created when MidiShare wakes up at the
very first MidiOpen.

34

MidiCopyEv

DESCRIPTION

Duplicates an event, taking into account the structure of the event. It can be
used to copy any type of events, from simple notes to large system exclusives.

PROTOTYPE

C Atari MidiEvPtr MidiCopyEv (e);
C Mac ANSI pascal MidiEvPtr MidiCopyEv (MidiEvPtr e);
Pascal Mac Function MidiCopyEv (e: MidiEvPtr): MidiEvPtr;

ARGUMENTS

e : a MidiEvPtr, is a pointer to the event to be copied.

RESULT

The result is a MidiEvPtr, a pointer to the copy if the operation was successful.
The result is NIL if MidiShare was not able to allocate enough memory space
for the copy.

EXAMPLE (ANSI C)
Send from now, 10 times an identical note of pitch 60 every 250 ms.

MidiEvPtr e;
short myRefNum;
long d;
short i;
........

e = MidiNewEv (typeNote); /* create template note */
Pitch(e)= 60; /* fill up its parameters */
Vel(e) = 80;
Dur(e) = 250;
Chan(e) = 0;
Port(e) = 0;

for (d=MidiGetTime (), i=0; i<10; i++, d+=250)
/* send the 10 copies of the template */

MidiSendAt (myRefNum, MidiCopyEv(e), d);
MidiFreeEv(e); /* and free the template */

Note : it is very important that, once an event is sent, it must never be used
again by the application. Therefore, if an application needs to send the same
event several times duplicate copies must be used.

35

MidiCountAppls

DESCRIPTION

Gives the number of Midi applications currently active.

PROTOTYPE

C Atari short MidiCountAppls ();
C Mac ANSI pascal short MidiCountAppls ();
Pascal Mac Function MidiCountAppls : integer;

RESULT

The result is a 16-bit integer, the number of currently opened Midi applications.

EXAMPLE (ANSI C)
Print the name of all the actives MidiShare applications

void PrintApplNames(void)
{

short ref;
short i;

printf("List of MidiShare applications :\n");
for(i = 1; i <= MidiCountAppls(); ++i)
{

ref = MidiGetIndAppl(i);
printf("%i : %s \n", ref, MidiGetName(ref));

}
}

Note for Mac users : MidiShare was originally developed for Pascal on the
Macintosh. Therefore, in C, the result of MidiGetName is a Pascal string that
must be converted to a C string before being printed.

36

MidiCountDTasks

DESCRIPTION

Returns the number of time delayed tasks waiting in the list of an application.
Delayed tasks are function calls that where scheduled with MidiDTask and that
are now ready to be executed in the DTasksFifo of the application.

PROTOTYPE

C Atari long MidiCountDTasks (refNum);
C Mac ANSI pascal long MidiCountDTasks (short refNum);
Pascal Mac Function MidiCountDTasks (refNum: integer):longint;

ARGUMENTS

refNum : a 16-bit integer, the reference number of the application.

RESULT

The result is a 32-bit integer, the number of waiting DTasks.

EXAMPLE (ANSI C)
Execute the waiting DTasks of a MidiShare application.

void ExecuteAllDTasks(short refNum)
{

long n;

for (n=MidiCountDTasks(refNum), n>0; nÑ)
{

MidiExec1DTask(refNum);
}

}

Note : A typical application might execute the queued tasks from with in its
'main' loop, and since it is not under interruption, operating system calls may
be performed.
However this does mean that the execution time of these functions cannot be
accurately predicted.

37

MidiCountEvs

DESCRIPTION

Gives the number of events on wait into the reception FIFO of the application.

PROTOTYPE

C Atari long MidiCountEvs (refnum);
C Mac ANSI pascal long MidiCountEvs (short refnum);
Pascal Mac Function MidiCountEvs (refnum: integer) : longint;

ARGUMENTS

refNum : a 16-bit integer, the reference number of the application.

RESULT

The result is a 32-bit integer, the number of waiting events in the reception
FIFO.

EXAMPLE (ANSI C)
A receive alarm that processes all the received events by adding to their date a
one second delay.

void OneSecDelay (short refNum)
{

MidiEvPtr e;
long n;

for (n = MidiCountEvs(refNum); n > 0; Ñn)
{

e = MidiGetEv (refNum); /* Get an event from the FIFO */
Date(e) += 1000; /* Add 1000 ms to its date */
MidiSend(refNum,e); /* Then send the event */

}
}
......
/* Activate the receive alarm */
MidiSetRcvAlarm(myRefNum,OneSecDelay);

Note : such a function can be called repeatedly in the main event loop of the
application, but for really accurate time control, it must be installed as a receive
alarm with MidiSetRcvAlarm.

Note for Mac users : MidiShare was originally developed for Pascal on the
Macintosh. Therefore, in C, all procedures passed as arguments of a MidiShare
function must be declared as Pascal. In the previous example, OneSecDelay
must be declared as :

 pascal void OneSecDelay (short refNum)

38

MidiCountFields

DESCRIPTION

Gives the number of fields of an event.

PROTOTYPE

C Atari long MidiCountFields (e);
C Mac ANSI pascal long MidiCountFields (MidiEvPtr e);
Pascal Mac Function MidiCountFields (e: MidiEvPtr): longint;

ARGUMENTS

e : a MidiEvPtr, a pointer to the concerned event.

RESULT

The result is a 32-bit integer, the number of fields of the event.

EXAMPLE (ANSI C)
An universal method for printing of a MidiShare event.

void PrintEv(MidiEvPtr e)
{

long i, n;
n = MidiCountFields(e);
printf("Event %x content :\n", e);
printf(" link : %x\n", Link(e));
printf(" date : %i\n", Date(e));
printf(" type : %i\n", EvType(e));
printf(" ref : %i\n", RefNum(e));
printf(" port : %i\n", Port(e));
printf(" chan : %i\n", Chan(e));
printf(" %i fields : (", n);
for(i=0; i<n; ++i) printf("%i ",MidiGetField(e,i));
printf(")\n");

}

Note : MidiShare events carry two kinds of information, common information,
like date, type, channel, port etc. and specific information that depend of the
type of event. Fields allow a uniform method of access to this specific
information. Some events have fixed number of fields (for example notes have
three fields : pitch (8-bit), velocity (8-bit) and duration (16-bit)). Some others,
like system exclusive have a variable number of fields.

39

MidiDTask

DESCRIPTION

 As with MidiTask, MidiDTask allows an application to initiate a time delayed
function call, but unlike MidiTask, the call is not achieved under interruption
as soon as falling time is due. The address of the routine to be executed and the
corresponding arguments are stored in a special buffer. The application can
then process these waiting tasks, one by one, using to MidiExec1DTask.

PROTOTYPE OF MIDIDTASK

C Atari MidiEvPtr MidiDTask (MyProc, date, refNum, a1, a2, a3);
C Mac ANSI pascal MidiEvPtr MidiDTask (ProcPtr MyProc, long date,

short refNum,long a1,long a2,long a3);
Pascal Mac Function MidiDTask (MyProc:ProcPtr; date:longint;
 refNum:integer;a1,a2,a3:longint):MidiEvPtr;

ARGUMENTS OF MIDIDTASK

MyProc : is the address of the function to be called.

date : a 32-bit integer, it is the date at which this call is scheduled.

refNum : a 16-bit integer, it is the reference number of the application.

a1,a2,a3 : are 32-bit integers left at the userÕs disposal, as arguments to MyProc

RESULT OF MIDIDTASK

The result, a MidiEvPtr, is a pointer to a typeDProcess MidiShare event. The
result is NIL if MidiShare runs out of memory.

PROTOTYPE OF MYPROC

C Atari void MyProc (date, refNum, a1, a2, a3);
C Mac ANSI pascal void MyProc (long date,short refNum,long a1,long a2,

long a3);
Pascal Mac procedure MyProc (date:longint; refNum:integer;

a1,a2,a3: longint);

ARGUMENT OF MYPROC

date : a 32-bit integer, it is the date of the call .

refNum : a 16-bit integer, it is the reference number of the application.

a1,a2,a3 : are 32-bit integers that can be freely used.

EXAMPLE (ANSI C)

Schedule Action() procedure call 1000 ms ahead.

MidiEvPtr myDTask;

MyDTask = MidiDTask(Action, MidiGetTime()+1000, myRefNum, a1, a2, a3);

40

Note : The result, in myDTask, can be used to test the success of MidiDTask. It
can also be used by MidiForgetTask to try to "forget" a scheduled task before it
happens.

41

MidiExec1DTask

DESCRIPTION

Processes the first time delayed task on wait in the applications queue. The time
delayed tasks scheduled by MidiDTask are not processed at a given time, but
instead must be called using MidiExec1DTask which executes the first task in its
queue.

PROTOTYPE

C Atari void MidiExec1DTask (refnum);
C Mac ANSI pascal void MidiExec1DTask (short refnum);
Pascal Mac procedure MidiExec1DTask (refnum: integer);

ARGUMENTS

refNum : a 16-bit integer, it is the reference number of the application.

EXAMPLE (ANSI C)
Execute the waiting DTasks of a MidiShare application.

void ExecuteAllDTasks(short refNum)
{

long n;

for (n=MidiCountDTasks(refNum), n>0; nÑ)
{

MidiExec1DTask(refNum);
}

}

Note : Generally this function is called from within an applications 'main'
function, and as this is not under interruption it is possible to perform
operating system calls.

42

MidiExt2IntTime

DESCRIPTION

Converts an external time in millisecond to the value of an internal time. The
convertion is made by subtracting the current offset between internal and
external time.

PROTOTYPES

C Atari long MidiExt2IntTime (time);
C Mac ANSI pascal long MidiExt2IntTime (long time)
Pascal Mac Function MidiExt2IntTime (time : longint): longint;

ARGUMENTS

time : a 32-bits time in milliseconds

RESULT

the corresponding internal time, a 32-bits value in milliseconds.

Note: When MidiShare is locked we have the following equivalence :

MidiExt2IntTime(MidiGetExtTime()) == MidiGetTime ()

We have also :

TSyncInfo myInfo;
MidiGetSyncInfo(&myInfo);
MidiExt2IntTime(x) == x - myInfo.syncOffset

43

MidiFlushDTasks

DESCRIPTION

Flushes all the waiting DTasks in the application DTask list.

PROTOTYPE

C Atari void MidiFlushDTasks (refnum);
C Mac ANSI pascal void MidiFlushDTasks (short refnum);
Pascal Mac procedure MidiFlushDTasks (refnum: integer);

ARGUMENTS

refNum : a 16-bit integer, is the reference number of the application.

EXAMPLE (ANSI C)
Flushes all the waiting DTasks in the application DTask list.

short myRefNum;

.....

MidiFlushDTasks (myRefNum);

44

MidiFlushEvs

DESCRIPTION

Flushes all the waiting events in the reception FIFO of the application.

PROTOTYPE

C Atari void MidiFlushEvs (refNum);
C Mac ANSI pascal void MidiFlushEvs (short refNum);
Pascal Mac procedure MidiFlushEvs (refNum : integer);

ARGUMENTS

refNum : a 16-bit integer, is the reference number of the application.

EXAMPLE (ANSI C)
Flushes all the waiting events in the application reception FIFO.

short myRefNum;

.....

MidiFlushEvs (myRefNum);

45

MidiForgetTask

DESCRIPTION

Tries to "forget" a previously scheduled Task or DTasks. This is a very
powerful, but also dangerous function. An application must be sure that the
task has not yet executed before calling MidiForgetTask.

PROTOTYPE

C Atari void MidiForgetTask (v);
C Mac ANSI pascal void MidiForgetTask (MidiEvPtr *v);
Pascal Mac procedure MidiForgetTask (var v: MidiEvPtr);

ARGUMENTS

v : is the address of a variable pointing to a previously scheduled Task or
DTask but not yet executed. The variable may also contain NIL. In this case
MidiForgetTask does nothing.

SIDE EFFECT

The variable, which address is given in parameter, is set to NIL by
MidiForgetTask.

EXAMPLE 1 (ANSI C)
Create an infinite periodic clock (every 250ms) and stop it with MidiForgetTask.

MidiEvPtr theClock;

void InfClock (long date,short refNum,long delay,long a2,long a3)
{

MidiSendIm (refNum, MidiNewEv(typeClock));
theClock = MidiTask (InfClock, date+delay,refNum,delay,a2,a3);

}
/* Start the clock */
InfClock(MidiGetTime (), myRefNum, 250L, 0L, 0L);
......... /* Wait some time */
MidiForgetTask(&theClock); /* And forget it */

EXAMPLE 2 (ANSI C)

In the previous example theClock always point to a valid task because InfClock
never stop by itself. If the task may decide to stop itself, it must set the pointer to
NIL in order to avoid to forget an invalid task.

MidiEvPtr theClock;

void CountClock (long date, short refNum, long delay,long count, long a3)
{

if (count > 0)
{

MidiSendIm (refNum, MidiNewEv(typeClock));
theClock = MidiTask (CountClock, date+delay, refNum, delay,

count-1, a3);

46

} else {
theClock = NIL; /* here the task decide to stop itself */

/* so set the pointer to NIL */
}

}

/* Start 100 clocks */
CountClock(MidiGetTime (), myRefNum, 250L, 100L, 0L);
......... /* Wait some time */
MidiForgetTask(&theClock); /* And forget it */

If MidiForgetTask happens before the end of the 100 clocks, theClock points to a
valid task and MidiForgetTask(&theClock) is safe. If MidiForgetTask happens
after the end of the 100 clocks, theClock contains NIL and
MidiForgetTask(&theClock) is safe and will do nothing.

47

MidiFreeCell

DESCRIPTION

Frees a cell allocated by MidiNewCell function. This is the lowest level
command for accessing the MidiShare Memory Manager. One must be sure to
use MidiFreeCell on an individual cell allocated with MidiNewCell and not on
complete MidiShare events. Not doing so may result in the lose of cells.

PROTOTYPE

C Atari void MidiFreeCell (c);
C Mac ANSI pascal void MidiFreeCell (MidiEvPtr c);
Pascal Mac procedure MidiFreeCell (c: MidiEvPtr);

ARGUMENTS

c : a MidiEvPtr, a pointer to a basic cell of 16 bytes.

EXAMPLE (ANSI C)
Free a cell previously allocated.

MidiEvPtr aCell;

aCell = MidiNewCell();

....

MidiFreeCell(aCell);

Note : Cells allocated with MidiNewCell must be freed with MidiFreeCell and
not with MidiFreeEv.

48

MidiFreeEv

DESCRIPTION

Frees a MidiShare event allocated with MidiNewEv. MidiFreeEv takes into
account the event structure by checking the events type. For this reason,
MidiFreeEv must not be used on cell allocated with MidiNewCell.

PROTOTYPE

C Atari void MidiFreeEv (e);
C Mac ANSI pascal void MidiFreeEv (MidiEvPtr e);
Pascal Mac procedure MidiFreeEv (e: MidiEvPtr);

ARGUMENTS

e : a MidiEvPtr, it is a pointer to a MidiShare event.

EXAMPLE (ANSI C)
A receive alarm that delete all the received events.

short myRefNum;
.....

void DeleteAll(short refNum)
{

MidiEvPtr e;
long n;

for (n = MidiCountEvs(refNum); n > 0; Ñn)
{

e = MidiGetEv (refNum); /* Get an event from the FIFO */
MidiFreeEv(e); /* Then free it */

}
}
......
/* Activate the receive alarm */
MidiSetRcvAlarm(myRefNum, DeleteAll);

Note : For this example it would be simpler and faster to use MidiFlushEvs to
achieve the same result.

Note for Mac users : MidiShare was originally developed for Pascal on the
Macintosh. Therefore, in C, all function passed as arguments of a MidiShare
function must be declared as Pascal. In the previous example, DeleteAll must be
declared as :

pascal void DeleteAll(short refNum)

49

MidiFreeSeq

DESCRIPTION

Frees a sequence and its content. MidiFreeSeq first de-allocates all the events of
the given sequence and then the sequence header itself.

PROTOTYPE

C Atari void MidiFreeSeq (s);
C Mac ANSI pascal void MidiFreeSeq (MidiSeqPtr s);
Pascal Mac procedure MidiFreeSeq (s:MidiSeqPtr);

ARGUMENTS

s : a MidiSeqPtr, is a pointer on a sequence to be freed.

EXAMPLE (ANSI C)
Frees a previously allocated sequence s.

MidiSeqPtr s;

s = MidiNewSeq();
....
MidiFreeSeq(s);

Note : Once freed, s is no longer a valid pointer.

50

MidiFreeSpace

DESCRIPTION

Returns the available free MidiShare event space. MidiFreeSpace allows to
know at any time the number of cells remaining available from the MidiShare
memory manager.

PROTOTYPE

C Atari long MidiFreeSpace();
C Mac ANSI pascal long MidiFreeSpace(void);
Pascal Mac Function MidiFreeSpace : longint;

ARGUMENTS

none

RESULT

The result is a 32-bit integer, the number of available free cells in the MidiShare
memory manager.

EXAMPLE (ANSI C)
Print informations about MidiShare memory space.

void PrintMemInfo(void)
{

printf("MidiShare memory :\n");
printf(" free space : %i cells\n", MidiFreeSpace());
printf(" used space : %i cells\n", MidiTotalSpace() - MidiFreeSpace());
printf(" total space : %i cells\n", MidiTotalSpace());

}

N o t e : MidiFreeSpace inhibits all interrupts during its execution. If the
remaining space is very large MidiFreeSpace can take a long time to execute and
may cause overrun errors with fast incoming Midi data.

51

MidiGetApplAlarm

DESCRIPTION

Returns the context alarm of an application. MidiGetAlarm allows to know the
address of the context alarm function associated to the application. This alarm is
automatically called by MidiShare to inform the application of all the changes
that happen to the active Midi applications (name or connection changes,
closing, opening, etc.)

PROTOTYPE OF MIDIGETAPPLALARM

C Atari ApplAlarmPtr MidiGetApplAlarm (refNum);
C Mac ANSI pascal ApplAlarmPtr MidiGetApplAlarm (short refNum);
Pascal Mac Function MidiGetApplAlarm (refNum: integer)

:ApplAlarmPtr;

ARGUMENTS OF MIDIGETAPPLALARM

refNum : a 16-bit integer, it is the reference number of the application.

RESULT

The result, a ApplAlarmPtr, is the address of the alarm routine or NIL if no
such routine was installed.

PROTOTYPE OF AN APPLALARM ROUTINE

C Atari void MyApplAlarm (refNum,code);
C Mac ANSI pascal void MyApplAlarm (short refNum, long code);
Pascal Mac procedure MyApplAlarm (refNum: integer; code:longint);

ARGUMENTS OF AN APPLALARM ROUTINE

refNum : a 16-bit integer, it is the reference number of the application.

code : a 32-bit integer, the context modification code.

EXAMPLE (ANSI C)
Temporarily disables the applications context alarm.

ApplAlarmPtr p;
.....
p = MidiGetApplAlarm(myRefNum);
MidiSetApplAlarm(NIL); /* Disable application context alarm*/
.....
MidiSetApplAlarm(p); /* Restore application context alarm*/

52

MidiGetEv

DESCRIPTION

Extracts the first event on in the reception FIFO. The received events, stored
automatically by MidiShare in the application reception FIFO, can be picked up
by successive calls to MidiGetEv function.

PROTOTYPE

C Atari MidiEvPtr MidiGetEv (refNum) ;
C Mac ANSI pascal MidiEvPtr MidiGetEv (short refNum);
Pascal Mac Function MidiGetEv (refNum: integer) : MidiEvPtr;

ARGUMENTS

refNum : a 16-bit integer, is the reference number of the application.

RESULT

A MidiEvPtr, is a pointer to the first event in the reception FIFO, or NIL if the
FIFO is empty. The event is extracted from the reception FIFO.

EXAMPLE (ANSI C)
A receive alarm that processes all the received events by adding to their date a
one second delay.

void OneSecDelay (short refNum)
{

MidiEvPtr e;
long n;
for (n = MidiCountEvs(refNum); n > 0; Ñn)
{

e = MidiGetEv (refNum); /* Get an event from the FIFO */
Date(e) += 1000; /* Add 1000 ms to its date */
MidiSend(refNum,e); /* Then send the event */

}
}
.....
/* Activate the receive alarm */
MidiSetRcvAlarm(myRefNum,OneSecDelay);

Note : such a function can be called repeatedly in the main event loop of the
application, but for really accurate time control, it must be installed as a receive
alarm with MidiSetRcvAlarm.
Note for Mac users : MidiShare was originally developed for Pascal on the
Macintosh. Therefore, in C, all functions passed as arguments of a MidiShare
function must be declared as Pascal. In the previous example, OneSecDelay
must be declared as:

pascal void OneSecDelay (short refNum)

53

MidiGetExtTime

DESCRIPTION

Gives the current external time i.e. the position of the tape converted in
milliseconds.

PROTOTYPES

C Atari long MidiGetExtTime ();
C Mac ANSI pascal long MidiGetExtTime (void);
Pascal Mac function MidiGetExtTime : longint;

ARGUMENTS

none

EXAMPLE (ANSI C)
Gives the SMPTE current location of the tape.

TSyncInfo myInfo;
TSmpteLocation myLoc;

MidiGetSyncInfo(&myInfo);
MidiTime2Smpte(MidiGetExtTime(), myInfo.syncFormat, &myLoc);

Note

When the tape is stopped, MidiGetExtTime returns the stop position of the tape
converted in milliseconds.

54

MidiGetField

DESCRIPTION

Gives the index field value of an event. Field index start from 0. Depending of
the event type and field nature, the field format can be 8, 16 or 32-bit.
MidiGetField deals with all the format conversion and the result is always a 32-
bit integer.

PROTOTYPE

C Atari long MidiGetField (e, f);
C Mac ANSI pascal long MidiGetField (MidiEvPtr e, long f);
Pascal Mac Function MidiGetField (e: MidiEvPtr; f: longint): longint;

ARGUMENTS

e : a MidiEvPtr, it is a pointer to the event to be accessed.

f : a 32-bit integer, it is the field number to be read (numbered from 0).

RESULT

The result is a 32-bit integer, the value of the field. Fields are considered as
unsigned.

EXAMPLE (ANSI C)
An universal method for printing of a MidiShare event.

void PrintEv(MidiEvPtr e)
{

long i, n;

n = MidiCountFields(e);
printf("Event %x content :\n", e);
printf(" link : %x\n", Link(e));
printf(" date : %i\n", Date(e));
printf(" type : %i\n", EvType(e));
printf(" ref : %i\n", RefNum(e));
printf(" port : %i\n", Port(e));
printf(" chan : %i\n", Chan(e));
printf(" %i fields : (", n);
for(i=0; i<n; ++i) printf("%i ",MidiGetField(e,i));
printf(")\n");

}

Note : MidiShare events carry two kind of information : common information,
like date, type, channel, port ..., and specific information that depend of the type
of event. Fields allow a uniform method of access to these specific data's. Some
events have fixed number of fields (for example notes have three fields : pitch
(8-bit), velocity (8-bit) and duration (16-bit)). Some others, like system exclusives
have a variable number of fields.

55

MidiGetFilter

DESCRIPTION

Gives the associated filter of an application. Each application can select the
events to be received by using a filter. The filtering process is local to the
application and has no influence on the events received by other applications.

PROTOTYPE

C Atari FilterPtr MidiGetFilter (refNum);
C Mac ANSI pascal FilterPtr MidiGetFilter (short refNum);
Pascal Mac Function MidiGetFilter (refNum: integer): FilterPtr;

ARGUMENTS

refNum : a 16-bit integer, the reference number of the application

RESULT

the result is a FilterPtr, a pointer to the filter associated to the application, or
NIL if there is no such filter (in this case the application accepts any events)

EXAMPLE (ANSI C)
<< to be supplied >>

56

MidiGetIndAppl

DESCRIPTION

Gives the reference of number of an application from is order number. The
MidiGetIndAppl function allows to know the reference number of any
application by giving its order number (a number between 1 and
MidiCountAppls()).

PROTOTYPE

C Atari short MidiGetIndAppl (index);
C Mac ANSI pascal short MidiGetIndAppl (short index);
Pascal Mac Function MidiGetIndAppl (index: integer) : integer;

ARGUMENTS

index : a 16-bit integer, is the index number of an application between
1 and MidiCountAppls().

RESULT

The result is an application reference number or MIDIerrIndex if the index is
out of range.

EXAMPLE (ANSI C)

Print the name of all the actives MidiShare applications

void PrintApplNames(void)
{

short ref;
short i;

printf("List of MidiShare applications :\n");
for(i = 1; i <= MidiCountAppls(); ++i)
{

ref = MidiGetIndAppl(i);
printf("%i : %s \n", ref, MidiGetName(ref));

}
}

Note for Mac users : MidiShare was originally developed for Pascal on the
Macintosh. Consequently, in C, the result of MidiGetName is a Pascal string
that must be converted to a C string before being printed.

57

MidiGetInfo

DESCRIPTION

Gives the content of a 32-bit field an application can use for any purpose. This
field remains accessible by MidiGetInfo during alarms and interrupts. It can be
used as a global context if necessary (for example for desk accessories on the
Macintosh).

PROTOTYPE

C Atari Ptr MidiGetInfo (short refNum);
C Mac ANSI pascal void* MidiGetInfo (short refNum);
Pascal Mac Function MidiGetInfo (refNum: integer) : Ptr;

ARGUMENTS

refNum : a 16-bit integer, the reference number of the application

RESULT

The result is a 32-bit integer, the last value set by MidiSetInfo

EXAMPLE (ANSI C)
<< to be supplied >>

58

MidiGetName

DESCRIPTION

Gives the name of an application. Knowing an application reference number, it
is possible to find its name using the MidiGetName function. It is also possible
to find the reference number of an application via its name using the
MidiGetNamedAppl function.

PROTOTYPE

C Atari MidiName MidiGetName (refNum);
C Mac ANSI pascal MidiName MidiGetName (short refNum);
Pascal Mac Function MidiGetName (refNum: integer) : MidiName;

ARGUMENTS

refNum : a 16-bit integer, the reference number of the application

RESULT

The result is pointer on a character string representing the application name.

EXAMPLE (ANSI C)
Print the name of all the active MidiShare applications

void PrintApplNames(void)
{

short ref;
short i;

printf("List of MidiShare applications :\n");
for(i = 1; i <= MidiCountAppls(); ++i)
{

ref = MidiGetIndAppl(i);
printf("%i : %s \n", ref, MidiGetName(ref));

}
}

Note for Mac users : MidiShare was originally developed for Pascal on the
Macintosh. Consequently, in C, the result of MidiGetName is a Pascal string
that must be converted to a C string before being printed.

59

MidiGetNamedAppl

DESCRIPTION

Returns the reference number of an application. Knowing an application name,
it is possible to find its reference number using the MidiGetNamedAppl
function. It is also possible to find the name of an application via its reference
number using the MidiGetName function.

PROTOTYPE

C Atari short MidiGetNamedAppl (MidiName name);
C Mac ANSI pascal short MidiGetNamedAppl (MidiName name);
Pascal Mac Function MidiGetNamedAppl (name: MidiName) : integer;

ARGUMENTS

name : the application name.

RESULT

The result is the reference number of the application.

EXAMPLE (ANSI C)
Find the reference number of the "MidiShare" pseudo-application.

short r;

/* MidiShare reference is always 0 */
r = MidiGetNamedAppl("MidiShare");

Note for Mac users : MidiShare was originally developed for Pascal on the
Macintosh. Consequently, in C, all strings passed as arguments of a MidiShare
function must be Pascal strings. In the previous example, one must write :

MidiGetNamedAppl("\pMidiShare")

60

MidiGetPortState

DESCRIPTION

Gives the Midi port state. The switching on or off of Midi ports is controlled by
the MidiSetPortState and MidiGetPortState routines. These must be used with
care since they affect all the applications.

PROTOTYPE

C Atari Boolean MidiGetPortState (port);
C Mac ANSI pascal Boolean MidiGetPortState (short port);
Pascal Mac Function MidiGetPortState (port: integer): boolean;

ARGUMENTS

port : a port number from 0 to 255.

RESULT

The result is true if the port is open or false if the port is closed.

EXAMPLE (ANSI C)
Print the state of all the Midi ports.

void PrintPortsState(void)
{

short i;

printf("Midi ports state :\n");
for(i = 0; i < 256; ++i)
{

if (MidiGetPortState(i))
printf(" %i is open \n", i);

else
printf(" %i is closed \n", i);

}
}

Note : On the Atari, there is just one Midi port (port 0), and on the Macintosh
there are just two ports (port modem: 0, port printer: 1). But the future LAN
version of MidiShare will allow up to 256 ports to be used. Therefore,
applications must consider that 256 ports are available.

61

MidiGetRcvAlarm

DESCRIPTION

Gives the address of a reception alarm of an application. The reception alarm
informs of the presence of these new events in the reception FIFO. This alarm
is always called under interruption. Therefore, it must not make use, either
directly or indirectly, the Macintosh Memory Manager. However it can have a
free access to all the MidiShare functions (except MidiOpen and MidiClose). It
can also use the global variables of the application, because, before the call,
MidiShare restores the global context register of the application.

PROTOTYPE

C Atari RcvAlarmPtr MidiGetRcvAlarm (refNum);
C Mac ANSI pascal RcvAlarmPtr MidiGetRcvAlarm (short refNum);
Pascal Mac function MidiGetRcvAlarm (refNum:integer)

:RcvAlarmPtr;

ARGUMENTS

refNum : a 16-bit integer, the reference number of the application

RESULT

The result, a RcvAlarmPtr, it is the address of the receive alarm routine or NIL
if no such routine where installed.

PROTOTYPE OF A RCVALARM ROUTINE

C Atari void MyRcvAlarm (refNum);
C Mac ANSI pascal void MyRcvAlarm (short refNum);
Pascal Mac procedure MyRcvAlarm (refNum:integer);

ARGUMENT OF A RCVALARM ROUTINE

refNum : a 16-bit integer, it is the reference number of the application.

EXAMPLE (ANSI C)
Temporarily disable the application receive alarm.

RcvAlarmPtr p;
.....
p = MidiGetRcvAlarm(myRefNum);
MidiSetRcvAlarm(NIL); /* Disable application receive alarm */
.....
MidiSetRcvAlarm(p); /* Restore application receive alarm */

62

MidiGetSyncInfo

DESCRIPTION

Fills a TSyncInfo record with information about the current state of the MTC
synchronisation.

PROTOTYPES

C Atari void MidiGetSyncInfo (p);
C Mac ANSI pascal void MidiGetSyncInfo (SyncInfoPtr p);
Pascal Mac procedure MidiGetSyncInfo (p: SyncInfoPtr);

ARGUMENTS

p: a SyncInfoPtr, a pointer to a TSyncInfo record

DESCRIPTION OF A TSYNCINFO RECORD

typedef struct TSyncInfo
{
long time; // the current MidiShare date (in milliseconds)
long reenter; // the current reentrancy count of the interrupt

handler
unsigned short syncMode;// the current synchronisation mode

as defined by MidiSetSyncMode
Byte syncLocked; // the current synchronisation state

(0 : unlocked 1 : locked)
Byte syncPort; // the current synchronisation port
long syncStart; // the date MidiShare started beeing locked

to external sync (in ms)
long syncStop; // the date MidiShare stopped being locked

to external sync (in ms)
long syncOffset; // the current offset (MidiGetExtTime() -

MidiGetTime (), in ms)
long syncSpeed; // the current value for the timer

(implementation dependent)
long syncBreaks; // the current count of breaks

(transition from state locked to unlocked)
short syncFormat; // the current synchronisation format

(0: 24 f/s, 1: 25 f/s, 2: 30DF f/s, 3: 30 f/s)
} TSyncInfo;

Note 1

syncMode is an unsigned 16-bits word of structure : xa000000pppppppp.

x (bit 15) is used to choose between internal synchronisation (x=0) and external
synchronisation (x=1)

a (bit 14) is used to choose between synchronisation on port p (a=0) and
synchronisation on any port (a=1)

bit 13:8 are reserved for future use and must be set to 0.

p (bit 0:7) is the synchronisation port to be used when x=1 and a=0. When a=1
the port number is ignored, the first port with incoming MTC is used.

Note 2

While MidiShare is locked (syncLocked == 1) syncOffset is constant and we
have the following relationships :
MidiGetExtTime() == MidiGetTime () + syncOffset
MidiInt2ExtTime(x) == x + syncOffset
MidiExt2IntTime(x) == x - syncOffset

63

EXAMPLE (ANSI C)
Gives the SMPTE start location of the tape.

TSyncInfo myInfo;
TSmpteLocation myLoc;

MidiGetSyncInfo(&myInfo);
MidiTime2Smpte(MidiInt2ExtTime(myInfo.syncStart), myInfo.syncFormat,

&myLoc);

64

MidiGetTime

DESCRIPTION

Gives in milliseconds the time elapsed since the starting up of MidiShare.

PROTOTYPE

C Atari long MidiGetTime ();
C Mac ANSI pascal long MidiGetTime ();
Pascal Mac Function MidiGetTime : longint;

ARGUMENTS

none

RESULT

The result is a 32-bit integer, being the elapsed time in milliseconds since the
starting up of MidiShare.

EXAMPLE (ANSI C)
A wait function :

void wait(long delay)
{

long d;

d = MidiGetTime () + delay;
while (MidiGetTime () < d);

}

65

MidiGetVersion

DESCRIPTION

Gives the version number of MidiShare

PROTOTYPE

C Atari short MidiGetVersion ();
C Mac ANSI pascal short MidiGetVersion (void);
Pascal Mac Function MidiGetVersion : integer;

ARGUMENTS

none

RESULT

The result is a 16-bit integer, the MidiShare version number. A result of 161
means <version 1.61>.

EXAMPLE (ANSI C)
Print the MidiShare version number

void PrintVersion(void)
{

printf("MidiShare version : %4.2f\n",MidiGetVersion()/100.0);
}

66

MidiGrowSpace

DESCRIPTION

Tries to increase the memory space of MidiShare.

PROTOTYPE

C Atari long MidiGrowSpace (n);
C Mac ANSI pascal long MidiGrowSpace (long n);
Pascal Mac Function MidiGrowSpace (n : longint): longint;

ARGUMENTS

n : the number of cells to increase the MidiShare memory space.

RESULT

The result is a 32-bit integer, the number of new cells actually allocated.

EXAMPLE (ANSI C)
Add 1000 cells to MidiShare memory space.

void TryGrowSpace(void)
{

printf("Try to allocate 1000 cells : %ld\n", MidiGrowSpace(1000));
}

Note : On the Atari, MidiGrowSpace can only be used from a desk accessory,
and not from a normal application.

67

MidiInt2ExtTime

DESCRIPTION

Convert an internal time in millisecond to an external time. The convertion is
made by adding the current offset between internal and external time.

PROTOTYPES

C Atari long MidiInt2ExtTime (time);
C Mac ANSI pascal long MidiInt2ExtTime (long time)
Pascal Mac function MidiGetExtTime (time : longint) : longint;

ARGUMENTS

time : a 32-bits time in milliseconds

RESULT

the corresponding external time, a 32-bits value in milliseconds.

Note

When MidiShare is locked we have the following equivalence :

MidiInt2ExtTime(MidiGetTime ()) == MidiGetExtTime()

 Also :

TSyncInfo myInfo;

MidiGetSyncInfo(&myInfo);
MidiInt2ExtTime(x) == x + myInfo.syncOffset

68

MidiIsConnected

DESCRIPTION

Gives the state of a connection between two MidiShare applications.
Connections allow real-time communications of midi events between
applications.

PROTOTYPE

C Atari Boolean MidiIsConnected (src, dest);
C Mac ANSI pascal Boolean MidiIsConnected (short src, short dest);
Pascal Mac Function MidiIsConnected (src, dest: integer) : boolean;

ARGUMENTS

src : is the reference number of a source application

dest : is the reference number of a destination application

RESULT

The result is true when a connection exist between the source and the
destination, and false otherwise.

EXAMPLE (ANSI C)
Print all the sources of an application

void PrintSources(short refNum)
{

short src;
short i;

printf("Sources of : %s\n", MidiGetName(refNum));
for(i = 1; i <= MidiCountAppls(); ++i)
{

src = MidiGetIndAppl(i);
if (MidiIsConnected(src, refNum))

printf(" %i : %s \n", src, MidiGetName(src));
}

}

Note for Mac users : MidiShare was originally developed for Pascal on the
Macintosh. Consequently, the result of MidiGetName is a Pascal string that
must be converted to a C string to be printed.

69

MidiNewCell

DESCRIPTION

Allocates a simple memory cell from the MidiShare memory manager. For
some special application, it may be useful to have access to the basic functions of
the memory manager. All the events managed by MidiShare are implemented
from fixed-sized cells (16 bytes).

PROTOTYPE

C Atari MidiEvPtr MidiNewCell ();
C Mac ANSI pascal MidiEvPtr MidiNewCell (void);
Pascal Mac Function MidiNewCell : MidiEvPtr;

ARGUMENTS

none

RESULT

The result a MidiEvPtr, a pointer to a memory cell, or NIL when memory space
is exhausted.

EXAMPLE (ANSI C)
Allocate a new cell.

MidiEvPtr c;

c = MidiNewCell();

.....

MidiFreeCell(c);

Note : Cells allocated with MidiNewCell must be freed with MidiFreeCell and
not with MidiFreeEv.

70

MidiNewEv

DESCRIPTION

Allocates a new event of desirable type.

PROTOTYPE

C Atari MidiEvPtr MidiNewEv (short typeNum);
C Mac ANSI pascal MidiEvPtr MidiNewEv (short typeNum);
Pascal Mac Function MidiNewEv (typeNum: integer): MidiEvPtr;

ARGUMENTS

typeNum : the type of event to be allocated

RESULT

The result a MidiEvPtr, a pointer to a MidiShare event of the desired type, or
NIL if the MidiShare memory space is exhausted.

EXAMPLE (ANSI C)
A function for creating note events.

MidiEvPtr Note(long date, short pitch, short vel, long dur,
short chan, short port)

{
MidiEvPtr e;

if (e= MidiNewEv(typeNote))
{

Date(e) = date;
Pitch(e) = pitch;
Vel(e) = vel;
Dur(e) = dur;
Chan(e) = chan;
Port(e) = port;

}
return e;

}

71

MidiNewSeq

DESCRIPTION

Allocation of a new empty sequence.

PROTOTYPE

C Atari MidiSeqPtr MidiNewSeq ();
C Mac ANSI pascal MidiSeqPtr MidiNewSeq ();
Pascal Mac Function MidiNewSeq : MidiSeqPtr;

ARGUMENTS

none

RESULT

The result is a MidiSeqPtr, a pointer to an empty sequence.

EXAMPLE (ANSI C)
Create a sequence of 10 Midi clocks.

MidiSeqPtr ClockSeq()
{

MidiSeqPtr s;
MidiEvPtr e;
long d;

s = MidiNewSeq();
for (d=0; d< 2500; d+=250)
{

e = MidiNewEv (typeClock);
Date(e) = d;
MidiAddSeq (s, e);

}
return s;

}

72

MidiOpen

DESCRIPTION

Opening of MidiShare. MidiOpen allows the recording of some information
relative to the application context (its name, the value of the global data
register, etc.), to allocate a reception FIFO and to attribute a unique reference
number to the application. In counterpart to any MidiOpen call, the application
must call the MidiClose function before leaving, by giving its reference number
as an argument. MidiShare can thus be aware of the precise number of active
Midi applications.

PROTOTYPE

C Atari short MidiOpen (applName);
C Mac ANSI pascal short MidiOpen (MidiName applName);
Pascal Mac Function MidiOpen (applName: midiName): integer;

ARGUMENTS

applName : the name of the application.

RESULT

The result is a unique reference number identifying the application.

EXAMPLE (ANSI C)
A do-nothing MidiShare application.

#include MidiShare.h
#include <stdio.h>

short myRefNum;

main()
{

if (! MidiShare()) exit(1); /* Check MidiShare loaded */
myRefNum = MidiOpen("Sample"); /* Ask for a reference number*/
if (myRefNum < 1) exit(1); /* Check MidiOpen success */
printf("refNum : %i \n", myRefNum); /* Print the reference number*/
MidiClose(myRefNum); /* And close */

}

Note for Mac users : MidiShare was originally developed for Pascal on the
Macintosh. Consequently, in C, all strings passed as arguments of a MidiShare
function must be Pascal strings. In the previous example, one must write :

myRefNum = MidiOpen("\pSample");

73

MidiReadSync

DESCRIPTION

The MidiReadSync function reads and sets to NIL a memory address. This
function is none-interruptable in order to make easier communication between
the application tasks that run at interrupt level. It can be used to implement
some sort of "mail boxes" in conjunction of MidiWriteSync.

PROTOTYPE

C Atari Ptr MidiReadSync (adrMem);
C Mac ANSI pascal void* MidiReadSync (void* adrMem) ;
Pascal Mac Function MidiReadSync (adrMem: univ ptr): ptr;

ARGUMENTS

adrMem : the address of a variable containing a 32-bit data.

RESULT

The result is the content of the variable.

SIDE EFFECT

Once read, the content of the variable is set to NIL.

EXAMPLE (ANSI C)
<< to be supplied >>

74

MidiSend

DESCRIPTION

Sends an event. A copy of the event is sent to all the application destinations.
The date field of the event is used to specify when the destinations will actually
receive the event.

PROTOTYPE

C Atari void MidiSend (refNum, e);
C Mac ANSI pascal void MidiSend (short refNum, MidiEvPtr e);
Pascal Mac procedure MidiSend (refNum: integer; e : MidiEvPtr);

ARGUMENTS

refNum : a 16-bit integer, it is the reference number of the application.

e : a MidiEvePtr, it is a pointer to the event to send.

EXAMPLE (ANSI C)
A receive alarm that processes all the received events by adding a one second
delay to their date.

void OneSecDelay (short refNum)
{

MidiEvPtr e;
long n;

for (n = MidiCountEvs(refNum); n > 0; Ñn)
{

e = MidiGetEv (refNum); /* Get an event from the FIFO */
Date(e) += 1000; /* Add 1000 ms to its date */
MidiSend(refNum,e); /* Then send the event */

}
}
......
/* Activate the receive alarm*/
MidiSetRcvAlarm(myRefNum,OneSecDelay);

Note : such a function can be called repeatedly in the main event loop of the
application, but for really accurate time control, it must be installed as a receive
alarm with MidiSetRcvAlarm.

Note for Mac users : MidiShare was originally developed for Pascal on the
Macintosh. Consequently, in C, all functions passed as arguments of a
MidiShare function must be declared as Pascal. In the previous example,
OneSecDelay must be declared as :

 pascal void OneSecDelay (short refNum)

75

MidiSendAt

DESCRIPTION

Sends an event. A copy of the event is sent to all the application destinations.
The date argument is used to specify when destinations will actually receive the
event.

PROTOTYPE

C Atari void MidiSendAt (refNum, e);
C Mac ANSI pascal void MidiSendAt (short refNum, MidiEvPtr e, long d);
Pascal Mac procedure MidiSendAt (refNum:integer;e:MidiEvPtr;d:longint);

ARGUMENTS

refNum : a 16-bit integer, it is the reference number of the application.

e : a MidiEvePtr, it is a pointer to the event to send.

d : a 32-bit integer, the date when destinations will receive the event.

EXAMPLE (ANSI C)
Equivalence between MidiSend, MidiSendAt and MidiSendIm :

MidiSendAt(myRefNum,e,MidiGetTime ());

is equivalent to :

MidiSendIm(myRefNum,e);

is equivalent to :

Date(e) = MidiGetTime ();
MidiSend(myRefNum, e);

76

MidiSendIm

DESCRIPTION

Immediately sends an event. A copy of the event is sent to all the application
destinations.

PROTOTYPE

C Atari void MidiSendIm (refNum, e);
C Mac ANSI pascal void MidiSendIm (short refNum, MidiEvPtr e);
Pascal Mac procedure MidiSendIm (refNum:integer;e:MidiEvPtr);

ARGUMENTS

refNum : a 16-bit integer, it is the reference number of the application.

e : a MidiEvePtr, it is a pointer to the event to send.

EXAMPLE (ANSI C)
equivalence between MidiSend, MidiSendAt and MidiSendIm :

MidiSendIm(myRefNum,e);

is equivalent to :

MidiSendAt(myRefNum,e,MidiGetTime ());

is equivalent to :

Date(e) = MidiGetTime ();
MidiSend(myRefNum, e);

77

MidiSetApplAlarm

DESCRIPTION

Defines the context alarm of an application. This alarm will be called by
MidiShare on every application of global context modifications (opening and
closing of applications, opening and closing of midi ports, changes in
connections between applications, SMPTE synchronisation).

PROTOTYPE

C Atari void MidiSetApplAlarm(short refNum,ApplAlarmPtr
alarm);
C Mac ANSI pascal void MidiSetApplAlarm(short refNum,ApplAlarmPtr
alarm);
Pascal Mac Procedure MidiSetApplAlarm(refNum:integer;

alarm:ApplAlarmPtr);

ARGUMENTS

refNum : a 16-bit integer, it is the reference number of the application.

alarm : a ApplAlarmPtr, a pointer to the application context alarm
routine.

PROTOTYPE OF A APPLALARM ROUTINE

C Atari void MyApplAlarm (refNum, code);
C Mac ANSI pascal void MyApplAlarm (short refNum, long code);
Pascal Mac procedure MyApplAlarm (refNum:integer; code:longint);

ARGUMENT OF A APPLALARM ROUTINE

refNum : a 16-bit integer, it is the reference number of the application.

code : a 32-bit integer, the context modification code : 0xRRRRMMMM
where RRRR is the Reference number of the involved application and MMMM
the type of change (see Midi Change Codes).

EXAMPLE (ANSI C)
<< to be supplied >>

78

MidiSetField

DESCRIPTION

Attributes a value to a field of an event. The access to the compulsory fields of
the event is done directly. But the access to the variables fields is achieved
through the MidiSetField and MidiGetField functions.

The function deals with the conversion of this value into the concerned field
format (8, 16 or 32-bit).

PROTOTYPE

C Atari void MidiSetField (MidiEvPtr e, long f, long v);
C Mac ANSI pascal void MidiSetField (MidiEvPtr e, long f, long v);
Pascal Mac procedure MidiSetField (e:MidiEvPtr; f:longint; v:longint);

ARGUMENTS

e : a MidiEvPtr, a pointer to the event to be modified

f : a 32-bit integer, the index number of the field to modify (from 0 to
MidiCountFields(e)-1)

v : a 32-bit value to put in the field. This value will be converted to the right
size (8, 16 or 32-bit)

EXAMPLE (ANSI C)
<< to be supplied >>

79

MidiSetFilter

DESCRIPTION

Associates a filter to an application. Each application can select the events to be
received by using a filter. The filtering process is local to the application and has
no influence on the events received by the other applications. The
implementation of these filters is achieved by two routines : MidiSetFilter and
MidiGetFilter.

PROTOTYPE

C Atari void MidiSetFilter (refNum, filter);
C Mac ANSI pascal void MidiSetFilter (short refNum, FilterPtr filter);
Pascal Mac procedure MidiSetFilter (refNum: integer;

filter: FilterPtr);

ARGUMENTS

refNum : a 16-bit integer, it is the reference number of the application.

filter : a FilterPtr, a pointer to the application filter.

EXAMPLE (ANSI C)
<< to be supplied >>

80

MidiSetInfo

DESCRIPTION

Defines the global information area of an application. The Macintosh desk
accessories cannot have global variables. To make up for this drawback, the
MidiSetInfo routine allows each application to define a data area. This area
remains accessible by MidiGetInfo function, even during the alarm, and also
serves as a global context to desk accessories.

PROTOTYPE

C Atari void MidiSetInfo (refNum, infoZone);
C Mac ANSI pascal void MidiSetInfo (short refNum, void* infoZone);
Pascal Mac procedure MidiSetInfo (refNum: integer; infoZone: Ptr);

ARGUMENTS

refNum : a 16-bit integer, it is the reference number of the application.

infoZone : an arbitrary 32-bit value, generally a pointer or a handle.

EXAMPLE (ANSI C)
<< to be supplied >>

81

MidiSetName

DESCRIPTION

Changes the name of an application.

PROTOTYPE

C Atari void MidiSetName (refNum, name);
C Mac ANSI pascal void MidiSetName (short refNum, MidiName name);
Pascal Mac procedure MidiSetName (refNum: integer; name: midiName);

ARGUMENTS

refNum : a 16-bit integer, it is the reference number of the application.

name : a MidiName, the new application name.

EXAMPLE (ANSI C)
<< to be supplied >>

82

MidiSetPortState

DESCRIPTION

For opening and closing of a Midi port. The implementation of Midi ports is
controlled by the MidiSetPortState and MidiGetPortState routines. These must
be used with care since they affect all the applications.

A closed port is available for other uses (printing, AppleTalk, etc.).

The Midi applications holding a "context alarm" will be informed of this
change in the ports state.

PROTOTYPE

C Atari void MidiSetPortState (port, state);
C Mac ANSI pascal void MidiSetPortState (short port, Boolean state);
Pascal Mac procedure MidiSetPortState (port: integer; state: boolean);

ARGUMENTS

port : a 16-bit integer, the port number to control.

state : a Boolean, True : to open a port, False : to close a port.

EXAMPLE (ANSI C)
<< to be supplied >>

83

MidiSetRcvAlarm

DESCRIPTION

Defines the event reception alarm of an application. The alarm will be
automatically called by MidiShare to inform the application of the presence of
new events in its reception FIFO. This alarm is always called under
interruption. It must not use, directly or indirectly, the Macintosh Memory
Manager, however it can freely access all the others MidiShare functions,
particularly the event management (but not MidiOpen and MidiClose). It can
also use applications global variables, since MidiShare restores its global context
register, before the call.

PROTOTYPE OF MIDISETRCVALARM

C Atari void MidiSetRcvAlarm(refNum, alarm);
C Mac ANSI pascal void MidiSetRcvAlarm(short refNum, RcvAlarmPtr alarm);
Pascal Mac Procedure MidiSetRcvAlarm(refNum:integer;alarm:RcvAlarmPtr);

ARGUMENTS OF MIDISETRCVALARM

refNum : a 16-bit integer, the reference number of the application

alarm : a RcvAlarmPtr, a pointer to a receive alarm routine or NIL to
disable receive alarms.

PROTOTYPE OF A RCVALARM ROUTINE

C Atari void MyRcvAlarm (refNum);
C Mac ANSI pascal void MyRcvAlarm (short refNum);
Pascal Mac procedure MyRcvAlarm (refNum:integer);

ARGUMENT OF A RCVALARM ROUTINE

refNum : a 16-bit integer, it is the reference number of the application.

EXAMPLE (ANSI C)
A receive alarm that processes all the received events by adding to their date a
one second delay.

void OneSecDelay (short refNum)
{

MidiEvPtr e;
long n;

for (n = MidiCountEvs(refNum); n > 0; Ñn)
{

e = MidiGetEv (refNum); /* Get an event from the FIFO */
Date(e) += 1000; /* Add 1000 ms to its date */
MidiSend(refNum,e); /* Then send the event */

}
}

......
/* Install the receive alarm */
MidiSetRcvAlarm(myRefNum,OneSecDelay);

84

Note : Such a function could be called repeatedly in the main event loop of the
application, but for really accurate time control, it must be installed as a receive
alarm with MidiSetRcvAlarm.

Note for Mac users : MidiShare was originally developed for Pascal on the
Macintosh. Consequently, in C, all functions passed as arguments of a
MidiShare function must be declared as Pascal. In the previous example,
OneSecDelay must be declared as :

pascal void OneSecDelay (short refNum)

85

MidiSetSyncMode

DESCRIPTION

Set the synchronisation mode of MidiShare.

PROTOTYPES

C Atari void MidiSetSyncMode (mode);
C Mac ANSI pascal void MidiSetSyncMode (unsigned short mode);
Pascal Mac procedure MidiSetSyncMode (mode: integer);

ARGUMENTS

mode : an unsigned 16-bits word of structure : xa000000pppppppp.

x (bit 15) is used to choose between internal synchronisation (x=0) and external
synchronisation (x=1)

a (bit 14) is used to choose between synchronisation on port p (a=0) and
synchronisation on any port (a=1)

bit 13:8 are reserved for future use and must be set to 0.

p (bit 0:7) is the synchronisation port to be used when x=1 and a=0. When a=1
the port number is ignored, the first port with incoming MTC is used.

EXAMPLE 1 (ANSI C)
Set the synchronisation to external, on any port.

MidiSetSyncMode(MIDISyncExternal | MIDISyncAnyPort);

EXAMPLE 2 (ANSI C)
Set the synchronisation to external, on port 18.

MidiSetSyncMode(MIDISyncExternal | 18);

EXAMPLE 3 (ANSI C)
Set the synchronisation to internal.

MidiSetSyncMode(MIDISyncInternal);

86

MidiShare

DESCRIPTION

Tests if MidiShare is resident in memory by looking for a specific pattern of
code. This is the first MidiShare function that an application should call.

PROTOTYPE

C Atari Boolean MidiShare ();
C Mac ANSI pascal Boolean MidiShare (void);
Pascal Mac Function MidiShare : boolean;

ARGUMENTS

none

RESULT

The result is true when MidiShare is loaded, false otherwise.

EXAMPLE (ANSI C)
A do-nothing MidiShare application.

#include MidiShare.h
#include <stdio.h>

short myRefNum;

main()
{

if (! MidiShare()) exit(1); /* Check MidiShare loaded */
myRefNum = MidiOpen("Sample"); /* Ask for a reference number */
if (myRefNum < 1) exit(1); /* Check MidiOpen success */
printf("refNum : %i \n", myRefNum); /* Print the reference number */
MidiClose(myRefNum); /* And close */

}

Note for Mac users : MidiShare was originally developed for Pascal on the
Macintosh. Consequently, in C, all strings passed as arguments of a MidiShare
function must be Pascal strings. In the previous example, one must write :

myRefNum = MidiOpen("\pSample");

87

MidiSmpte2Time

DESCRIPTION

Convert an SMPTE location to a time in millisecond.

PROTOTYPES

C Atari long MidiSmpte2Time (loc);
C Mac ANSI pascal long MidiSmpte2Time (SmpteLocPtr loc);
Pascal Mac function MidiSmpte2Time (loc: SmpteLocPtr): longint;

ARGUMENTS

loc : a pointer to a TSmpteLocation record to be converted in milliseconds.

RESULT

a 32-bits time in milliseconds

DESCRIPTION OF A TSMPTELOCATION

typedef struct TSmpteLocation *SmpteLocPtr;
typedef struct TSmpteLocation
{
 short format; // (0: 24 f/s, 1: 25 f/s, 2: 30DF f/s, 3: 30 f/s)
 short hours; // 0..23
 short minutes; // 0..59
 short seconds; // 0..59
 short frames; // 0..30 (according to format)
 short fracs; // 0..99 (1/100 of frames)
} TSmpteLocation;

EXAMPLE (ANSI C)
Gives the SMPTE location from its current format to 30 drop frame (format 2).

TSmpteLocation myLoc;
...

// we suppose here myLoc filled with an SMPTE location

MidiTime2Smpte(MidiSmpte2Time(&myLoc), 2, &myLoc);

// now myLoc is filled with the same SMPTE location but in 30 drop frame
format.

88

MidiTask

DESCRIPTION

 As with MidiDTask, MidiTask allows an application to initiate a time delayed
function call, however with MidiTask, the call is achieved under interruption
as soon as falling time is due.

PROTOTYPE OF MIDITASK

C Atari MidiEvPtr MidiTask (MyProc, date, refNum, a1, a2, a3);
C Mac ANSI pascal MidiEvPtr MidiTask (TaskPtr MyProc, long date,

short refNum, long a1, long a2,long a3);
Pascal Mac Function MidiTask (MyProc:TaskPtr; date:longint;

 refNum:integer;
a1,a2,a3:longint):MidiEvPtr;

ARGUMENTS OF MIDITASK

MyProc : a TaskPtr, it is the address of the routine to be called.

date : a 32-bit integer, it is the date at which this call is scheduled.

refNum : a 16-bit integer, it is the reference number of the application.

a1,a2,a3 : are 32-bit integers left at the userÕs disposal, as arguments to MyProc

RESULT OF MIDITASK

The result, a MidiEvPtr, is a pointer to a typeProcess MidiShare event. The
result is NIL if MidiShare run out of memory.

PROTOTYPE OF MYPROC

C Atari void MyProc (date, refNum, a1, a2, a3);
C Mac ANSI : pascal void MyProc (long date, short refNum,

 long a1, long a2, long a3);
Pascal Mac procedure MyProc (date:longint; refNum:integer;

 a1,a2,a3: longint);

ARGUMENT OF MYPROC

date : a 32-bit integer, it is the date of the call .

refNum : a 16-bit integer, it is the reference number of the application.

a1,a2,a3 : are 32-bit integers that can be freely used.

EXAMPLE (ANSI C)
Schedule a function Action() call 1000 ms ahead.

MidiEvPtr myTask;

myTask = MidiTask(Action,MidiGetTime ()+1000,myRefNum, a1, a2, a3);

89

Note : The result, in myTask, can be used to test the success of MidiTask. It can
also be used by MidiForgetTask to try to "forget" a scheduled task before it
happens.

90

MidiTime2Smpte

DESCRIPTION

Convert a time in millisecond to an SMPTE location.

PROTOTYPES

C Atari void MidiTime2Smpte (time, format, loc);
C Mac ANSI pascal void MidiTime2Smpte (long time, short format,

SmpteLocPtr loc);
Pascal Mac procedure MidiTime2Smpte (time: longint; format: integer;

loc:SmpteLocPtr);

ARGUMENTS

time : a 32-bits time in milliseconds to convert in an SMPTE location

format : a 16-bits integer, the SMPTE format to be used : (0 : 24 f/s, 1 : 25 f/s,
2 : 30DF f/s, 3 : 30 f/s)

loc : a pointer to a TSmpteLocation record to be filled with the resulting
SMPTE location.

DESCRIPTION OF A TSMPTELOCATION

typedef struct TSmpteLocation *SmpteLocPtr;
typedef struct TSmpteLocation
{
 short format; // (0 : 24 f/s, 1 : 25 f/s,

2 : 30DF f/s, 3 : 30 f/s)
 short hours; // 0..23
 short minutes; // 0..59
 short seconds; // 0..59
 short frames; // 0..30 (according to format)
 short fracs; // 0..99 (1/100 of frames)
} TSmpteLocation;

EXAMPLE (ANSI C)
Gives the SMPTE start location of the tape.

TSyncInfo myInfo;
TSmpteLocation myLoc;

MidiGetSyncInfo(&myInfo);
MidiTime2Smpte(MidiInt2ExtTime(myInfo.syncStart),

myInfo.syncFormat, &myLoc);

91

MidiTotalSpace

DESCRIPTION

Gives the total number of cells allocated to MidiShare. MidiTotalSpace allows
an application to know at any time the total number of cells allocated by the
MidiShare memory manager at startup.

PROTOTYPE

C Atari long MidiTotalSpace ();
C Mac ANSI pascal long MidiTotalSpace (void);
Pascal Mac Function MidiTotalSpace : longint;

ARGUMENTS

none

RESULT

the result is a 32-bit integer, the total number of cells in the MidiShare memory
manager.

EXAMPLE (ANSI C)
Print information about MidiShare memory space.

void PrintMemInfo(void)
{

printf("MidiShare memory :\n");
printf(" free space : %i cells\n", MidiFreeSpace());
printf(" used space : %i cells\n", MidiTotalSpace() - MidiFreeSpace());
printf(" total space : %i cells\n", MidiTotalSpace());

}

92

MidiWriteSync

DESCRIPTION

Writes a 32-bit value to a variable only if the previous variable content was
NIL. This function is non-interruptable in order to simplify communication
between application tasks that run at interrupt level. It can be used to
implement "mail boxes" between tasks when used in conjunction with
MidiReadSync

PROTOTYPE

C Atari Ptr MidiWriteSync (adrMem, val);
C Mac ANSI pascal void* MidiWriteSync (void *adrMem, void *val);
Pascal Mac Function MidiWriteSync (adrMem:univ ptr;val:univ ptr):ptr;

ARGUMENTS

adrMem : is the address of a variable to be modified.

val : is a 32-bit value to write.

RESULT

The result is the previous content of the variable.

EXAMPLE (ANSI C)
<< to be supplied >>

93

typeActiveSens (code 15)

EVENT DESCRIPTION

A Real Time ActiveSens message.

Fields : ActiveSens events have no field.

EXAMPLE (ANSI C)
Creates a ActiveSens event. Return a pointer to the event or NIL if there is no
more memory space.

MidiEvPtr ActiveSens (long date, short port)
{

MidiEvPtr e;

if (e = MidiNewEv(typeActiveSens)
/* Allocate a new event. Check not NIL*/
{

Date(e) = date; /* These informations are common */
Port(e) = port; /* to all kind of events */

}
return e;

}

94

typeChanPress (code 6)

EVENT DESCRIPTION

A Channel pressure message with pressure value.

Fields : ChanPress events have 1 field numbered 0 :

0 - A channel pressure value from 0 to 127. (Field size : 1 byte)

EXAMPLE (ANSI C)
Creates a ChanPress event. Return a pointer to the event or NIL if there is no
more memory space.

MidiEvPtr ChanPress(long date, short press, short chan, short port)
{

MidiEvPtr e;

if (e = MidiNewEv(typeChanPress))
/* Allocate a new event. Check not NIL*/
{

Date(e) = date; /* These informations's are common to all */
Chan(e) = chan; /* kind of events */
Port(e) = port;
MidiSetField(e,0,press); /* Field particular to ChanPress */

}
return e;

}

95

typeClock (code 10)

EVENT DESCRIPTION

A Real Time Clock message.

Fields : Clock events have no field.

EXAMPLE (ANSI C)
Creates a Clock event. Return a pointer to the event or NIL if there is no more
memory space.

MidiEvPtr Clock (long date, short port)
{

MidiEvPtr e;

if (e = MidiNewEv(typeClock))/* Allocate a new event. Check not NIL*/
{

Date(e) = date; /* These informations are common to all */
Port(e) = port; /* kind of events */

}
return e;

}

96

typeContinue (code 12)

EVENT DESCRIPTION

A Real Time Continue message.

Fields : Continue events have no field.

EXAMPLE (ANSI C)
Creates a Continue event. Return a pointer to the event or NIL if there is no
more memory space.

MidiEvPtr Continue (long date, short port)
{

MidiEvPtr e;

if (e = MidiNewEv(typeContinue))
/* Allocate a new event. Check not NIL */
{

Date(e) = date; /* These informations are common to all */
Port(e) = port; /* kind of events */

}
return e;

}

97

typeCopyright (code 136)

EVENT DESCRIPTION

A copyright event (from the MidiFile 1.0 specification). This event CANNOT be
sent to external Midi devices.

Fields : typeCopyrigth events have a variable number of character fields.

EXAMPLE 1 (ANSI C)
Creates a typeCopyright event from a character string. Return a pointer to the
event or NIL if there is not enough memory space.

MidiEvPtr Copyright (long date, char *s, short chan, short port)
{

MidiEvPtr e;
long c=0;

if (e = MidiNewEv(typeCopyright))
/* Allocate a new event. Check not NIL */
{

Date(e) = date; /* These informations are common to all */
Chan(e) = chan; /* kind of events */
Port(e) = port;
for (c=0; *s; s++, c++) /* Build the event while counting */

MidiAddField(e ,*s); /* the characters of the original string */
if (c != MidiCountFields(e)) { /* Check the length of the event */

MidiFreeEv(e); /* if we run out of memory : free the */
return 0; /* event and return NIL */

}
}
return e;

}

EXAMPLE 2 (ANSI C)
Convert a typeCopyrigth event into a character string. Assume s big enough.

void GetText (MidiEvPtr e, char *s)
{

short c=0, i=0;

c = MidiCountFields(e);
while (i<c) *s++ = MidiGetField(e, i++);
*s = 0;

}

98

typeCtrl14b (code 131)

EVENT DESCRIPTION

A Control Change event with a controller number from 0 to 31 and a 14-bits
value. When a typeCtrl14b event is sent to external Midi devices, actually two
control change messages are sent, the first one for the MSB part of the value
and the second one for the LSB part of the value. The message for the LSB part
is sent only when the LSB part of the value is different from 0.

Fields : Ctrl14b events have 2 fields numbered from 0 to 1 :

0 - A control number from 0 to 31. (Field size : 2 byte)

1 - A control value from 0 to 16383. (Field size : 2 byte)

EXAMPLE (ANSI C)
Creates a CtrlChange event. Return a pointer to the event or NIL if there is no
more memory space.

MidiEvPtr CtrlChange14b(long date, short ctrl, short val, short chan, short
port)
{

MidiEvPtr e;

if (e = MidiNewEv(typeCtrl14b))
/* Allocate a new event. Check not NIL */
{

Date(e) = date; /* These informations are common to all */
Chan(e) = chan; /* kind of events */
Port(e) = port;
MidiSetField(e,0,ctrl); /* Fields particular to CtrlChange */
MidiSetField(e,1,val);

}
return e;

}

99

typeCtrlChange (code 4)

EVENT DESCRIPTION

A Control Change message with controller and value.

Fields : CtrlChange events have 2 fields numbered from 0 to 1 :

0 - A control number from 0 to 127. (Field size : 1 byte)

1 - A control value from 0 to 127. (Field size : 1 byte)

EXAMPLE (ANSI C)
Creates a CtrlChange event. Return a pointer to the event or NIL if there is no
more memory space.

MidiEvPtr CtrlChange(long date, short ctrl, short val, short chan, short
port)
{

MidiEvPtr e;

if (e = MidiNewEv(typeCtrlChange))
/* Allocate a new event.Check not NIL */
{

Date(e) = date; /* These informations are common to all */
Chan(e) = chan; /* kind of events */
Port(e) = port;
MidiSetField(e,0,ctrl); /* Fields particular to CtrlChange */
MidiSetField(e,1,val);

}
return e;

}

100

typeChanPrefix (code 142)

EVENT DESCRIPTION

A channel prefix event (from the MidiFile 1.0 specification). This event
CANNOT be sent to external Midi devices.

Fields : typeChanPrefix events have one field.

0 - A channel prefix number from 0 to 15. (Field size : 1 byte)

EXAMPLE (ANSI C)
Creates a typeChanPrefix event. Return a pointer to the event or NIL if there is
not enough memory space.

MidiEvPtr ChanPrefix (long date, short prefix)
{

MidiEvPtr e;
long c=0;

if (e = MidiNewEv(typeChanPrefix))
/* Allocate a new event. Check not NIL */
{

Date(e) = date;
MidiSetField(e, 0, prefix);

}
return e;

}

101

typeCuePoint (code 141)

EVENT DESCRIPTION

A cue point event (from the MidiFile 1.0 specification). This event CANNOT be
sent to external Midi devices.

Fields : typeCuePoint events have a variable number of character fields.

EXAMPLE 1 (ANSI C)
Creates a typeCuePoint event from a character string. Return a pointer to the
event or NIL if there is not enough memory space.

MidiEvPtr CuePoint (long date, char *s, short chan, short port)
{

MidiEvPtr e;
long c=0;

if (e = MidiNewEv(typeCuePoint))
/* Allocate a new event. Check not NIL */
{

Date(e) = date; /* These informations are common to all */
Chan(e) = chan; /* kind of events */
Port(e) = port;
for (c=0; *s; s++, c++) /* Build the event while counting the */

MidiAddField(e ,*s); /* characters of the original string */
if (c != MidiCountFields(e)) { /* Check the length of the event */

MidiFreeEv(e); /* if we run out of memory : free the */
return 0; /* event and return NIL */

}
}
return e;

}

EXAMPLE 2 (ANSI C)
Convert a typeCuePoint event into a character string. Assume s big enough.

void GetText (MidiEvPtr e, char *s)
{

short c=0, i=0;

c = MidiCountFields(e);
while (i<c) *s++ = MidiGetField(e, i++);
*s = 0;

}

102

typeDProcess (code 129)

EVENT DESCRIPTION

DProcess events are automatically created by MidiDTask. They are used to
realize time delayed function calls. Once the scheduling date is due, the routine
is not automatically executed, but stored in a special list. It is the applications
responsability to individually execute those pending tasks using
MidiExec1DTask.

Fields : DProcess events have 4 fields numbered from 0 to 3 :

0 - a TaskPtr, the address of the function to call. (Field size : 4 byte)

1 - the first argument of the function. (Field size : 4 byte)

2 - the second argument of the function. (Field size : 4 byte)

3 - the third argument of the function. (Field size : 4 byte)

EXAMPLE (ANSI C)
Creates a DProcess event in the same way than MidiDTask.

MidiEvPtr MakeDTask (TaskPtr proc, long date, short refNum, long arg1,
long arg2, long arg3)

{
MidiEvPtr e;

if (e = MidiNewEv(typeDProcess))
/* Allocate a new event. Check not NIL */
{

MidiSetField(e, 0, (long)proc); /* Fill the 4 fields */
MidiSetField(e, 1, arg1);
MidiSetField(e, 2, arg2);
MidiSetField(e, 3, arg3);
MidiSendAt(refNum, e, date); /* and schedule the differed task*/

}
return e;

}

103

typeEndTrack (code 143)

EVENT DESCRIPTION

An end of track event (from the MidiFile 1.0 specification). This event
CANNOT be sent to external Midi devices.

Fields : typeEndTrack events have no field.

EXAMPLE (ANSI C)
Creates a typeEndTrack event. Return a pointer to the event or NIL if there is
not enough memory space.

MidiEvPtr EndTrack (long date)
{

MidiEvPtr e;

if (e = MidiNewEv(typeEndTrack))
/* Allocate a new event. Check not NIL */
{

Date(e) = date;
}
return e;

}

104

typeInstrName (code 138)

EVENT DESCRIPTION

An instrument name event (from the MidiFile 1.0 specification). This event
CANNOT be sent to external Midi devices.

Fields : typeInstrName events have a variable number of character fields.

EXAMPLE 1 (ANSI C)
Creates a typeInstrName event from a character string and returns a pointer to
the event or NIL if there is not enough memory space.

MidiEvPtr InstrName (long date, char *s, short chan, short port)
{

MidiEvPtr e;
long c=0;

if (e = MidiNewEv(typeInstrName))
/* Allocate a new event. Check not NIL */
{

Date(e) = date; /* These informations are common to all */
Chan(e) = chan; /* kind of events */
Port(e) = port;
for (c=0; *s; s++, c++) /* Build the event while counting the */

MidiAddField(e ,*s); /* characters of the original string */
if (c != MidiCountFields(e)) { /* Check the length of the event */

MidiFreeEv(e); /* if we run out of memory : free the */
return 0; /* event and return NIL */

}
}
return e;

}

EXAMPLE 2 (ANSI C)
Converts a typeInstrName event into a character string. Assume s is big
enough.

void GetText (MidiEvPtr e, char *s)
{

short c=0, i=0;

c = MidiCountFields(e);
while (i<c) *s++ = MidiGetField(e, i++);
*s = 0;

}

105

typeKeyOff (code 2)

EVENT DESCRIPTION

A Note Off message with pitch and velocity.

Fields : KeyOff events have 2 fields numbered from 0 to 1 :

0 - Pitch, a note number from 0 to 127. (Field size : 1 byte)

1 - Vel, a note velocity from 0 to 127. (Field size : 1 byte)

EXAMPLE 1 (ANSI C)
Creates a KeyOff event, and returns a pointer to the event or NIL if there is no
more memory space. Fields are modified using MidiSetField instead of direct
structure access.

MidiEvPtr KeyOff(long date, short pitch, short vel, short chan, short port)
{

MidiEvPtr e;

if (e = MidiNewEv(typeKeyOff))
/* Allocate a new event. Check not NIL */
{

Date(e) = date; /* These informations are common to all */
Chan(e) = chan; /* kind of events */
Port(e) = port;
MidiSetField(e,0,pitch); /* These fields are particular to KeyOff */
MidiSetField(e,1,vel);

}
return e;

}

EXAMPLE 2 (ANSI C)
Creates a KeyOff event, and returns a pointer to the event or NIL if there is no
more memory space. Fields are modified using direct structure access instead of
MidiSetField.

MidiEvPtr KeyKeyOff(long date, short pitch, short vel, short chan, short
port)
{

MidiEvPtr e;

if (e = MidiNewEv(typeKeyOff))
/* Allocate a new event. Check not NIL */
{

Date(e) = date; /* These informations are common to all */
Chan(e) = chan; /* kind of events */
Port(e) = port;
Pitch(e) = pitch; /* These fields are particular to KeyOff*/
Vel(e) = vel;

}
return e;

}

106

typeKeyOn (code 1)

EVENT DESCRIPTION

A Note On message with pitch and velocity.

Fields : KeyOn events have 2 fields numbered from 0 to 1 :

0 - Pitch, a note number from 0 to 127. (Field size : 1 byte)

1 - Vel, a note velocity from 0 to 127. (Field size : 1 byte)

EXAMPLE 1 (ANSI C)
Creates a KeyOn event, and returns a pointer to the event or NIL if there is no
more memory space. Fields are modified using MidiSetField instead of direct
structure access.

MidiEvPtr KeyOn(long date, short pitch, short vel, short chan, short port)
{

MidiEvPtr e;

if (e = MidiNewEv(typeKeyOn))
/* Allocate a new event. Check not NIL */
{

Date(e) = date; /* These informations are common to all */
Chan(e) = chan; /* kind of events */
Port(e) = port;
MidiSetField(e,0,pitch); /* These fields are particular to KeyOn */
MidiSetField(e,1,vel);

}
return e;

}

EXAMPLE 2 (ANSI C)
Creates a KeyOn event and returns a pointer to the event or NIL if there is no
more memory space. Fields are modified using direct structure access instead of
MidiSetField.

MidiEvPtr KeyOn(long date, short pitch, short vel, short chan, short port)
{

MidiEvPtr e;

if (e = MidiNewEv(typeKeyOn))
/* Allocate a new event. Check not NIL */
{

Date(e) = date; /* These informations are common to all */
Chan(e) = chan; /* kind of events */
Port(e) = port;
Pitch(e) = pitch; /* These fields are particular to KeyOn */
Vel(e) = vel;

}
return e;

}

107

typeKeyPress (code 3)

EVENT DESCRIPTION

A Polyphonic Key Pressure message with pitch and pressure.

Fields : KeyPress events have 2 fields numbered from 0 to 1 :

0 - Pitch, a note number from 0 to 127. (Field size : 1 byte)

1 - Press, a key pressure from 0 to 127. (Field size : 1 byte)

EXAMPLE 1 (ANSI C)
Creates a KeyPress event and returns a pointer to the event or NIL if there is no
more memory space. Fields are modified using MidiSetField instead of direct
structure access.

MidiEvPtr KeyPress(long date, short pitch, short press, short chan, short
port)
{

MidiEvPtr e;

if (e = MidiNewEv(typeKeyPress))
/* Allocate a new event. Check not NIL */
{

Date(e) = date; /* These informations are common to all */
Chan(e) = chan; /* kind of events */
Port(e) = port;
MidiSetField(e,0,pitch);/* These fields are particular to KeyPress */
MidiSetField(e,1,press);

}
return e;

}

EXAMPLE 2 (ANSI C)
Creates a KeyPress event and returns a pointer to the event or NIL if there is no
more memory space. Fields are modified using direct structure access instead of
MidiSetField.

MidiEvPtr KeyPress(long date, short pitch, short press, short chan, short
port)
{

MidiEvPtr e;

if (e = MidiNewEv(typeKeyPress))
/* Allocate a new event. Check not NIL */
{

Date(e) = date; /* These informations are common to all */
Chan(e) = chan; /* kind of events */
Port(e) = port;
Pitch(e) = pitch; /* These fields are particular to KeyPress*/
Vel(e) = press; /* Same byte than velocity */

}
return e;

}

108

typeKeySign (code 147)

EVENT DESCRIPTION

A Key Signature event (form the MidiFile 1.0 specification). This event
CANNOT be sent to external Midi devices.

Fields : typeKeySign events have 2 fields :

0 - from -7 (7 flats) to 7 (7 sharps), (8-bits field)

1 - form 0 (major key) to 1 (minor key), (8-bits field)

EXAMPLE (ANSI C)
Creates a Key Signature event and returns a pointer to the event or NIL if there
is no more memory space.

MidiEvPtr KeySign (long date, long sharpflats, long minor)
{

MidiEvPtr e;

if (e = MidiNewEv(typeKeySign))
/* Allocate a new event. Check not NIL */
{

Date(e) = date;
MidiSetField(e, 0, sharpflats);
MidiSetField(e, 1, minor);

}
return e;

}

109

typeLyric (code 139)

EVENT DESCRIPTION

A lyric event (from the MidiFile 1.0 specification). This event CANNOT be sent
to external Midi devices.

Fields : typeLyric events have a variable number of character fields.

EXAMPLE 1 (ANSI C)
Creates a typeLyric event from a character string and returns a pointer to the
event or NIL if there is not enough memory space.

MidiEvPtr Lyric (long date, char *s, short chan, short port)
{

MidiEvPtr e;
long c=0;

if (e = MidiNewEv(typeLyric))
/* Allocate a new event. Check not NIL */
{

Date(e) = date; /* These informations are common to all */
Chan(e) = chan; /* kind of events */
Port(e) = port;
for (c=0; *s; s++, c++) /* Build the event while counting the */

MidiAddField(e ,*s); /* characters of the original string */
if (c != MidiCountFields(e)) {/* Check the length of the event */

MidiFreeEv(e); /* if we run out of memory : free the */
return 0; /* event and return NIL */

}
}
return e;

}

EXAMPLE 2 (ANSI C)
Convert a typeLyric event into a character string. Assume s big enough.

void GetText (MidiEvPtr e, char *s)
{

short c=0, i=0;

c = MidiCountFields(e);
while (i<c) *s++ = MidiGetField(e, i++);
*s = 0;

}

110

typeMarker (code 140)

EVENT DESCRIPTION

A marker event (from the MidiFile 1.0 specification). This event CANNOT be
sent to external Midi devices.

Fields : typeMarker events have a variable number of character fields.

EXAMPLE 1 (ANSI C)
Creates a typeMarker event from a character string and returns a pointer to the
event or NIL if there is not enough memory space.

MidiEvPtr Marker (long date, char *s, short chan, short port)
{

MidiEvPtr e;
long c=0;

if (e = MidiNewEv(typeMarker))
/* Allocate a new event. Check not NIL */
{

Date(e) = date; /* These informations are common to all */
Chan(e) = chan; /* kind of events */
Port(e) = port;
for (c=0; *s; s++, c++) /* Build the event while counting the */

MidiAddField(e ,*s); /* characters of the original string */
if (c != MidiCountFields(e)) { /* Check the length of the event */

MidiFreeEv(e); /* if we run out of memory : free the */
return 0; /* event and return NIL */

}
}
return e;

}

EXAMPLE 2 (ANSI C)
Convert a typeMarker event into a character string. Assume s big enough.

void GetText (MidiEvPtr e, char *s)
{

short c=0, i=0;

c = MidiCountFields(e);
while (i<c) *s++ = MidiGetField(e, i++);
*s = 0;

}

111

typeNonRegParam (code 132)

EVENT DESCRIPTION

A Non Registered Parameter event with a 14-bit parameter number and a 14-bit
parameter value. When a typeNonRegParam event is sent to external Midi
devices, actually four control change messages are sent, two to select the non-
registered parameter number, and two for the parameter value using the 14-bits
data-entry controller.

Fields : typeNonRegParam events have 2 fields numbered from 0 to 1 :

0 - A Non Registered Parameter number from 0 to 16383. (Field size : 2
bytes)

1 - A parameter value from 0 to 16383. (Field size : 2 bytes)

EXAMPLE (ANSI C)
Creates a Non Registered Parameter event and returns a pointer to the event or
NIL if there is no more memory space.

MidiEvPtr NonRegParam(long date, short param, short val, short chan, short
port)
{

MidiEvPtr e;

if (e = MidiNewEv(typeNonRegParam))
/* Allocate a new event. Check not NIL */
{

Date(e) = date; /* These informations are common to all */
Chan(e) = chan; /* kind of events */
Port(e) = port;
MidiSetField(e,0,param); /* Fields particular to NonRegParam */
MidiSetField(e,1,val);

}
return e;

}

112

typeNote (code 0)

EVENT DESCRIPTION

A note with pitch, velocity and duration. When a Note event is sent to external
Midi devices, actually a NoteOn message is first sent followed, after a delay
specified by the duration, by a NoteOn with a velocity of 0 to end the note.

Fields : Note events have 3 fields numbered from 0 to 2 :

0 - Pitch, a note number from 0 to 127. (Field size : 1 byte)

1 - Vel, a note velocity from 0 to 127. (Field size : 1 byte)

2 - Dur, a note duration from 0 to 215-1. (Field size : 2 bytes)

EXAMPLE 1 (ANSI C)
Creates a Note event and returns a pointer to the event or NIL if there is no
more memory space. Fields are modified using MidiSetField instead of direct
structure access.

MidiEvPtr Note(long date, short pitch, short vel, short duration,
short chan, short port)

{
MidiEvPtr e;

if (e = MidiNewEv(typeNote)) /* Allocate a new event. Check not NIL */
{

Date(e) = date; Port(e) = port; /* These informations are common */
Chan(e) = chan; /* to all kind of events */
MidiSetField(e,0,pitch); /* These fields are particular to Notes */
MidiSetField(e,1,vel);
MidiSetField(e,2,dur);

}
return e;

}

EXAMPLE 2 (ANSI C)
Creates a Note event and returns a pointer to the event or NIL if there is no
more memory space. Fields are modified using direct structure access instead of
MidiSetField.

MidiEvPtr Note(long date, short pitch, short vel, short duration,
short chan, short port)

{
MidiEvPtr e;

if (e = MidiNewEv(typeNote)) /* Allocate a new event. Check not NIL */
{

Date(e) = date; Port(e) = port; /* These informations are common */
Chan(e) = chan; /* to all kind of events */
Pitch(e) = pitch; /* These fields are particular to Notes */
Vel(e) = vel; Dur(e) = dur;

}
return e;

}

113

typePitchWheel (code 7)

EVENT DESCRIPTION

A Pitch Bender message with a 14 bits resolution.

Fields : PitchWheel events have 2 fields numbered from 0 to 1 :

0 - LS 7-Bits of 14-bits pitch swing, from 0 to 127. (Field size : 1 byte)

1 - MS 7-Bits of 14-bits pitch swing, from 0 to 127. (Field size : 1 byte)

EXAMPLE (ANSI C)
Creates a PitchWheel event with a parameter between -8192 and 8191. This
returns a pointer to the event or NIL if there is no more memory space.

MidiEvPtr PitchWheel(long date, short wheel, short chan, short port)
{

const offset = 8192;
const min = -8192;
const max = 8191;
MidiEvPtr e;

wheel = (wheel>max) ? max : (wheel<min) ? min : wheel;

if (e = MidiNewEv(typePitchWheel))
/* Allocate a new event. Check not NIL */
{

Date(e) = date; /* These informations are common to all */
Chan(e) = chan; /* kind of events */
Port(e) = port;
MidiSetField(e,0,(wheel+offset) & 0x7F); /* LS-7bits Field */
MidiSetField(e,1,(wheel+offset)>>7 & 0x7F); /* MS-7bits Field */

}
return e;

}

114

typePrivate (code 19 to 127)

EVENT DESCRIPTION

A private event with 4 fields which can be freely used by the application.

Fields : Private events have 4 fields numbered from 0 to 3.

Fields size : 4 bytes

EXAMPLE (ANSI C)
<to be supplied>

115

typeProcess (code 128)

EVENT DESCRIPTION

Process events are automatically created by MidiCall and MidiTask. They are
used to realize time delayed function calls. The function call is achieved under
interruption as soon as the scheduling date is due.

Fields : Process events have 4 fields numbered from 0 to 3 :

0 - a TaskPtr, the address of the function to call. (Field size : 4 byte)

1 - the first argument of the function. (Field size : 4 byte)

2 - the second argument of the function. (Field size : 4 byte)

3 - the third argument of the function. (Field size : 4 byte)

EXAMPLE (ANSI C)
Creates a Process event in the same way than MidiTask.

MidiEvPtr MakeTask (TaskPtr proc, long date, short refNum, long arg1,
long arg2, long arg3)

{
MidiEvPtr e;

if (e = MidiNewEv(typeProcess))
/* Allocate a new event. Check not NIL */
{

MidiSetField(e, 0, (long)proc); /* Fill the 4 fields */
MidiSetField(e, 1, arg1);
MidiSetField(e, 2, arg2);
MidiSetField(e, 3, arg3);
MidiSendAt(refNum, e, date); /* and schedule the task */

}
return e;

}

116

typeProgChange (code 5)

EVENT DESCRIPTION

A Program Change message with a program number.

Fields : ProgChange events have 1 field numbered 0 :

0 - A program number from 0 to 127. (Field size : 1 byte)

EXAMPLE (ANSI C)
Creates a ProgChange event and returns a pointer to the event or NIL if there is
no more memory space.

MidiEvPtr ProgChange(long date, short prog, short chan, short port)
{

MidiEvPtr e;

if (e = MidiNewEv(typeProgChange))
/* Allocate a new event. Check not NIL */
{

Date(e) = date; /* These informations are common to all */
Chan(e) = chan; /* kind of events */
Port(e) = port;
MidiSetField(e,0,prog); /* Field particular to ProgChange */

}
return e;

}

117

typeQuarterFrame (code 130)

EVENT DESCRIPTION

A Midi time code quarter frame message with message type and value. These
two fields are automatically assembled by MidiShare into one byte when the
message is sent.

Fields : QuarterFrame events have 2 fields numbered from 0 to 1 :

0 - A message type from 0=Frame count LSB nibble to 7=Hours count MS
nibble. (Field size : 1 byte)

1 - A count nibble from 0 to 15. (Field size : 1 byte)

EXAMPLE (ANSI C)
Creates a QuarterFrame event and returns a pointer to the event or NIL if there
is no more memory space.

MidiEvPtr QuarterFrame(long date, short type, short nibble, short port)
{

MidiEvPtr e;

if (e = MidiNewEv(typeQuarterFrame))
/* Allocate a new event. Check not NIL */
{

Date(e) = date; /* These informations are common to all */
Port(e) = port; /* kind of events */
MidiSetField(e,0,type); /* Fields particular to QuarterFrame */
MidiSetField(e,1,nibble);

}
return e;

}

118

typeRegParam (code 133)

EVENT DESCRIPTION

A Registered Parameter event with a 14-bit parameter number and a 14-bit
parameter value. When a typeRegParam event is sent to external Midi devices,
actually four control change messages are sent, two to select the registered
parameter number, and two for the parameter value using the 14-bits data-entry
controller.

Fields : typeRegParam events have 2 fields numbered from 0 to 1 :

0 - A Registered Parameter number from 0 to 16383. (Field size : 2 byte)

1 - A Registered Parameter value from 0 to 16383. (Field size : 2 byte)

EXAMPLE (ANSI C)
Creates a Registered Parameter event. Return a pointer to the event or NIL if
there is no more memory space.

MidiEvPtr RegParam(long date, short param, short val, short chan, short
port)
{

MidiEvPtr e;

if (e = MidiNewEv(typeRegParam))
/* Allocate a new event. Check not NIL */
{

Date(e) = date; /* These informations are common to all */
Chan(e) = chan; /* kind of events */
Port(e) = port;
MidiSetField(e,0,param); /* Fields particular to RegParam */
MidiSetField(e,1,val);

}
return e;

}

119

typeReserved (code 149 to 254)

EVENT DESCRIPTION

These events are RESERVED for future use.

120

typeReset (code 16)

EVENT DESCRIPTION

A Real Time Reset message.

Fields : Reset events have no field.

EXAMPLE (ANSI C)
Creates a Reset event and returns a pointer to the event or NIL if there is no
more memory space.

MidiEvPtr Reset (long date, short port)
{

MidiEvPtr e;

if (e = MidiNewEv(typeReset))
/* Allocate a new event. Check not NIL */
{

Date(e) = date; /* These informations are common to all */
Port(e) = port; /* kind of events */

}
return e;

}

121

typeSeqName (code 137)

EVENT DESCRIPTION

A sequence name event (from the MidiFile 1.0 specification). This event
CANNOT be sent to external Midi devices.

Fields : typeSeqName events have a variable number of character fields.

EXAMPLE 1 (ANSI C)
Creates a typeSeqName event from a character string and returns a pointer to
the event or NIL if there is not enough memory space.

MidiEvPtr SeqName (long date, char *s, short chan, short port)
{

MidiEvPtr e;
long c=0;

if (e = MidiNewEv(typeSeqName))
/* Allocate a new event. Check not NIL */
{

Date(e) = date; /* These informations are common to all */
Chan(e) = chan; /* kind of events */
Port(e) = port;
for (c=0; *s; s++, c++) /* Build the event while counting the */

MidiAddField(e ,*s); /* characters of the original string */
if (c != MidiCountFields(e)) { /* Check the length of the event */

MidiFreeEv(e); /* if we run out of memory : free the */
return 0; /* event and return NIL */

}
}
return e;

}

EXAMPLE 2 (ANSI C)
Convert a typeSeqName event into a character string. Assume s big enough.

void GetText (MidiEvPtr e, char *s)
{

short c=0, i=0;

c = MidiCountFields(e);
while (i<c) *s++ = MidiGetField(e, i++);
*s = 0;

}

122

typeSeqNum (code 134)

EVENT DESCRIPTION

A Sequence number event (from the MidiFile 1.0 specification). This event
CANNOT be sent to external Midi devices.

Fields : typeSeqNum events have 1 field :

0 - Sequence number form 0 to 65535 (2-bytes field)

EXAMPLE (ANSI C)
Creates a Sequence Number event and returns a pointer to the event or NIL if
there is no more memory space.

MidiEvPtr SeqNum(long date, short num, short port)
{

MidiEvPtr e;

if (e = MidiNewEv(typeSeqNum))
/* Allocate a new event. Check not NIL */
{

Date(e) = date; /* These informations are common to all */
Port(e) = port; /* kind of events */
MidiSetField(e,0,num); /* the sequence number field */

}
return e;

}

123

typeSMPTEOffset (code 145)

EVENT DESCRIPTION

A SMPTE Offset event (from the MidiFile 1.0 specification). This event
CANNOT be sent to external Midi devices.

Fields : typeSMPTEOffset events have 2 fields :

0 - Hours, minute and second parts of the SMPTE Offset in seconds from 0
to 1048575 (20- bits field)

1 - Frames and 100ths of a frame part of the SMPTE Offset in 100ths of a
frame form 0 to 4095 (12-bits field)

EXAMPLE 1 (ANSI C)
Creates a SMPTE Offset event and returns a pointer to the event or NIL if there
is no more memory space.

MidiEvPtr SMPTEOffset(long hr, long mn, long sec, long frames, long
subframes)
{

MidiEvPtr e;

if (e = MidiNewEv(typeSMPTEOffset))
/* Allocate a new event. Check not NIL */
{

Date(e) = 0;
MidiSetField(e, 0, hr*3600 + mn*60 + sec);
MidiSetField(e, 1, (frames*100 + subframes));

}
return e;

}

EXAMPLE 2 (ANSI C)
Read the different parts of an SMPTE Offset event.

long GetHours (MidiEvPtr e) {
return MidiGetField(e,0) / 3600;

}

long GetMinutes (MidiEvPtr e) {
return MidiGetField(e,0) % 3600 / 60;

}

long GetSeconds (MidiEvPtr e) {
return MidiGetField(e,0) % 60;

}

long GetFrames (MidiEvPtr e) {
return MidiGetField(e,1) / 100;

}

long GetSubFrames (MidiEvPtr e) {
return MidiGetField(e,1) % 100;

}

124

typeSongPos (code 8)

EVENT DESCRIPTION

A Song Position Pointer message with a 14 bit location (unit : 6 Midi Clocks).

Fields : SongPos events have 2 fields numbered from 0 to 1 :

0 - LS 7-Bits of 14-bits location, from 0 to 127. (Field size : 1 byte)

1 - MS 7-Bits of 14-bits location, from 0 to 127. (Field size : 1 byte)

EXAMPLE (ANSI C)
Creates a SongPos event with a location in Midi clocks. The location is
internally divided by 6. Return a pointer to the event or NIL if there is no more
memory space.

MidiEvPtr SongPos(long date, short pos, short port)
{

MidiEvPtr e;

pos = pos / 6;

if (e = MidiNewEv(typeSongPos))
/* Allocate a new event. Check not NIL */
{

Date(e) = date; /* These informations are common to all */
Port(e) = port; /* kind of events */
MidiSetField(e,0,pos & 0x7F); /* LS-7bits Field */
MidiSetField(e,1,pos>>7 & 0x7F); /* MS-7bits Field */

}
return e;

}

125

typeSongSel (code 9)

EVENT DESCRIPTION

A Song Select message with a song number.

Fields : SongSel events have 1 field numbered 0 :

0 - A song number from 0 to 127. (Field size : 1 byte)

EXAMPLE (ANSI C)
Creates a SongSel event and returns a pointer to the event or NIL if there is no
more memory space.

MidiEvPtr SongSel (long date, short song, short port)
{

MidiEvPtr e;

if (e = MidiNewEv(typeSongSel))
/* Allocate a new event. Check not NIL */
{

Date(e) = date; /* These informations are common to all */
Port(e) = port; /* kind of events */
MidiSetField(e,0,song); /* Field particular to SongSel */

}
return e;

}

126

typeSpecific (code 148)

EVENT DESCRIPTION

A sequencer specific event (from the MidiFile 1.0 specification). This event
CANNOT be sent to external Midi devices.

Fields : typeSpecific events have a variable number of 8-bits fields.

EXAMPLE (ANSI C)
Creates a typeSpecific event from an array of bytes. Returns a pointer to the
event or NIL if there is no more memory space.

MidiEvPtr Specific (long date, short len, Byte *p)
{

MidiEvPtr e;
short c;

if (e = MidiNewEv(typeStream))
/* Allocate a new event. Check not NIL */
{

Date(e) = date;
c = len;
while (c--) MidiAddField(e,*p++);
if (MidiCountFields(e) < len) /* if event smaller than len then*/
{

MidiFreeEv(e); /* we run out of memory, free it */
e = nil; /* and return nil */

}
}
return e;

}

127

typeStart (code 11)

EVENT DESCRIPTION

A Real Time Start message.

Fields : Start events have no field.

EXAMPLE (ANSI C)
Creates a Start event and returns a pointer to the event or NIL if there is no
more memory space.

MidiEvPtr Start (long date, short port)
{

MidiEvPtr e;

if (e = MidiNewEv(typeStart))
/* Allocate a new event. Check not NIL */
{

Date(e) = date; /* These informations are common to all */
Port(e) = port; /* kind of events */

}
return e;

}

128

typeStop (code 13)

EVENT DESCRIPTION

A Real Time Stop message.

Fields : Stop events have no field.

EXAMPLE (ANSI C)
Creates a Stop event and returns a pointer to the event or NIL if there is no
more memory space.

MidiEvPtr Stop (long date, short port)
{

MidiEvPtr e;

if (e = MidiNewEv(typeStop))
/* Allocate a new event. Check not NIL */
{

Date(e) = date; /* These informations are common to all */
Port(e) = port; /* kind of events */

}
return e;

}

129

typeStream (code 18)

EVENT DESCRIPTION

Stream messages are arbitrary streams of bytes sent by the MidiShare driver
without any processing.

Fields : Stream events have a variable number of fields.

EXAMPLE (ANSI C)
Creates a Stream event from an array of shorts and returns a pointer to the
event or NIL if there is no more memory space.

MidiEvPtr Stream (long date, short len, short *p, short port)
{

MidiEvPtr e;
short c;

if (e = MidiNewEv(typeStream))
/* Allocate a new event. Check not NIL */
{

Date(e) = date; /* These informations are common to all */
Port(e) = port; /* kind of events */
c = len+1;
while (--c) MidiAddField(e,*p++);
if (MidiCountFields(e) < len) /* if event smaller than len then*/
{

MidiFreeEv(e); /* we run out of memory, free it */
e = nil; /* and return nil */

}
}
return e;

}

130

typeSysEx (code 17)

EVENT DESCRIPTION

A System Exclusive message.

Fields : SysEx events have a variable number of fields. The leading F0 and
tailing F7 codes MUST NOT be included. They are automatically supplied by
MidiShare. The channel field of the event is OR'ed with the first data byte after
the manufacturer ID. This works for setting the channel of many system
exclusive messages.

EXAMPLE (ANSI C)
Creates a SysEx event from an array of shorts and returns a pointer to the event
or NIL if there is no more memory space.

MidiEvPtr SysEx (long date, short len, short *p, short chan, short port)
{

MidiEvPtr e;
short c;

if (e = MidiNewEv(typeSysEx))
/* Allocate a new event. Check not NIL */
{

Date(e) = date; /* These informations are common to all */
Chan(e) = chan; /* kind of events */
Port(e) = port;
c = len+1;
while (--c) MidiAddField(e,*p++);
if (MidiCountFields(e) < len) /* if event smaller than len then*/
{

MidiFreeEv(e); /* we run out of memory, free it */
e = nil; /* and return nil */

}
}
return e;

}

131

typeTempo (code 144)

EVENT DESCRIPTION

A tempo event (from the MidiFile 1.0 specification). This event CANNOT be
sent to external Midi devices.

Fields : typeTempo events have one field.

 0 - A tempo value in microseconds/Midi quarter-note 0 to 127. (Field size :
4 bytes)

EXAMPLE 1 (ANSI C)
Creates a typeTempo event from a floating point tempo value in quarter-notes
per minutes. Returns a pointer to the event or NIL if there is not enough
memory space.

MidiEvPtr TempoChange (long date, float tempo)
{

MidiEvPtr e;

if (e = MidiNewEv(typeTempo))
/* Allocate a new event. Check not NIL */
{

Date(e) = date;
MidiSetField(e, 0, (long)(60000000.0 / tempo));

}
return e;

}

EXAMPLE 2 (ANSI C)
Converts a tempo event in microseconds per quarter-note in to a floating point
tempo value in quarter-notes per minutes.

float GetTempo (MidiEvPtr e)
{

return 60000000.0 / (float) MidiGetField(e,0);
}

132

typeText (code 135)

EVENT DESCRIPTION

A text event (from the MidiFile 1.0 specification). This event CANNOT be sent
to external Midi devices.

Fields : typeText events have a variable number of character fields.

EXAMPLE 1 (ANSI C)
Creates a typeText event from a character string and returns a pointer to the
event or NIL if there is not enough memory space.

MidiEvPtr Text (long date, char *s, short chan, short port)
{

MidiEvPtr e;
long c=0;

if (e = MidiNewEv(typeText))
/* Allocate a new event. Check not NIL */
{

Date(e) = date; /* These informations are common to all */
Chan(e) = chan; /* kind of events */
Port(e) = port;
for (c=0; *s; s++, c++) /* Build the text event while counting */

MidiAddField(e ,*s); /* the characters of the original string */
if (c != MidiCountFields(e)) {/* Check the length of the text event */

MidiFreeEv(e); /* if we run out of memory : free the */
return 0; /* text event and return NIL */

}
}
return e;

}

EXAMPLE 2 (ANSI C)
Convert a typeText event into a character string. Assume s big enough.

void GetText (MidiEvPtr e, char *s)
{

short c=0, i=0;

c = MidiCountFields(e);
while (i<c) *s++ = MidiGetField(e, i++);
*s = 0;

}

133

typeTimeSign (code 146)

EVENT DESCRIPTION

A Time Signature event (form the MidiFile 1.0 specification). This event
CANNOT be sent to external Midi devices.

Fields : typeTimeSign events have 4 fields :

0 - Numerator (8-bits field)

1 - denominator in power of two (8-bits field)

2 - Midi Clocks per metronome clicks (8-bits field)

3 - notated 32th of note per quarter-note (8-bits field)

EXAMPLE (ANSI C)
Creates a Time Signature event and returns a pointer to the event or NIL if
there is no more memory space.

MidiEvPtr TimeSign (long date, long num, long denom, long click, long
quarterDef)
{

MidiEvPtr e;

if (e = MidiNewEv(typeTimeSign))
/* Allocate a new event. Check not NIL */
{

Date(e) = date;
MidiSetField(e, 0, num);
MidiSetField(e, 1, denom);
MidiSetField(e, 2, click);
MidiSetField(e, 3, quarterDef);

}
return e;

}

134

typeTune (code 14)

EVENT DESCRIPTION

A Tune message.

Fields : Tune events have no field.

EXAMPLE (ANSI C)
Creates a Tune event and returns a pointer to the event or NIL if there is no
more memory space.

MidiEvPtr Tune (long date, short port)
{

MidiEvPtr e;

if (e = MidiNewEv(typeTune))/* Allocate a new event. Check not NIL */
{

Date(e) = date; /* These informations are common to all */
Port(e) = port; /* kind of events */

}
return e;

}

135

Index

MidiAddField.............................. 24
MidiAddSeq................................. 26
MidiApplySeq.............................. 27
MidiAvailEv................................ 28
MidiCall 29
MidiClearSeq............................... 31
MidiClose..................................... 32
MidiConnect 33
MidiCopyEv................................. 34
MidiCountAppls........................... 35
MidiCountDTasks......................... 36
MidiCountEvs............................... 37
MidiCountFields........................... 38
MidiDTask................................... 39
MidiExec1DTask........................... 41
MidiExt2IntTime 42
MidiFlushDTasks......................... 43
MidiFlushEvs............................... 44
MidiForgetTask............................ 45
MidiFreeCell................................ 47
MidiFreeEv 48
MidiFreeSeq................................. 49
MidiFreeSpace 50
MidiGetApplAlarm...................... 51
MidiGetEv.................................... 52
MidiGetExtTime........................... 53
MidiGetField 54
MidiGetFilter............................... 55
MidiGetIndAppl........................... 56
MidiGetInfo.................................. 57
MidiGetName 58
MidiGetNamedAppl 59
MidiGetPortState......................... 60
MidiGetRcvAlarm........................ 61
MidiGetSyncInfo........................... 62
MidiGetTime................................ 64
MidiGetVersion............................ 65
MidiGrowSpace............................ 66
MidiInt2ExtTime 67
MidiIsConnected........................... 68
MidiNewCell 69
MidiNewEv.................................. 70
MidiNewSeq 71
MidiOpen..................................... 72
MidiReadSync.............................. 73
MidiSend...................................... 74
MidiSendAt.................................. 75
MidiSendIm.................................. 76
MidiSetApplAlarm...................... 77
MidiSetField................................ 78
MidiSetFilter 79
MidiSetInfo.................................. 80
MidiSetName............................... 81
MidiSetPortState 82
MidiSetRcvAlarm 83
MidiSetSyncMode......................... 85
MidiShare.................................... 86
MidiSmpte2Time.......................... 87
MidiTask...................................... 88
MidiTime2Smpte.......................... 90
MidiTotalSpace............................ 91
MidiWriteSync............................. 92

typeActiveSens (code 15).............. 93
typeChanPress (code 6) 94
typeClock (code 10) 95
typeContinue (code 12) 96
typeCopyright (code 136) 97
typeCtrl14b (code 131).................. 98
typeCtrlChange (code 4) 99
typeChanPrefix (code 142) 100
typeCuePoint (code 141) 101
typeDProcess (code 129).............. 102
typeEndTrack (code 143)............. 103
typeInstrName (code 138)........... 104
typeKeyOff (code 2)................... 105
typeKeyOn (code 1).................... 106
typeKeyPress (code 3) 107
typeKeySign (code 147) 108
typeLyric (code 139) 109
typeMarker (code 140)................ 110
typeNonRegParam (code 132)..... 111
typeNote (code 0)....................... 112
typePitchWheel (code 7) 113
typePrivate (code 19 to 127)........ 114
typeProcess (code 128) 115
typeProgChange (code 5) 116
typeQuarterFrame (code 130) 117
typeRegParam (code 133) 118
typeReserved (code 149 to 254).... 119
typeReset (code 16) 120
typeSeqName (code 137) 121
typeSeqNum (code 134) 122
typeSMPTEOffset (code 145) 123
typeSongPos (code 8) 124
typeSongSel (code 9) 125
typeSpecific (code 148)............... 126
typeStart (code 11)..................... 127
typeStop (code 13)...................... 128
typeStream (code 18).................. 129
typeSysEx (code 17).................... 130
typeTempo (code 144) 131
typeText (code 135) 132
typeTimeSign (code 146)............. 133
typeTune (code 14)...................... 134

