
The T-Calculus : towards a structured
programing of (musical) time and space

David Janin1∗, Florent Berthaut1, Myriam DeSainte-Catherine1,
Yann Orlarey2, Sylvain Salvati1,3

1 Université de Bordeaux 2 GRAME
LaBRI UMR 5800 Centre Nat. de Création Musicale

351, cours de la libération 11, Cours de Verdun
F-33405 Talence, FRANCE F-69002 Lyon, FRANCE

3 Inria Bordeaux - Sud-Ouest
200, avenue de la Vieille Tour
F-33405 Talence, FRANCE

Corresp. author: janin@labri.fr

July 29, 2013

Abstract

In the field of music system programming, the T-calculus is a proposal
for combining space modeling and time programming into a single pro-
gramming feature: spatiotemporal tiled programming. Based on a solid
algebraic model, it aims at decomposing every operation on musical ob-
jects into the sequence of a synchronization operation that describes how
objects are positioned one with respect the other, and a fusion operation
that describes how their values are then combined. A first simple version
of such a tiled calculus is presented and studied in this paper.

1 Introduction

The complex structure space of music

The structure of music is complex. Being polyphonic, it is structured in some
musical space (P). Being rhythmic, it is structured in some musical time (T).
It also combines various levels of abstraction (A), from low level audio signal

∗partially funded by the project INEDIT, ANR-12-CORD-009

3

processing to high level concert movements combination, upon which may de-
pend the space and time scales. It can even be interactive (I), that is, subject
to changes depending on the input of several independent (or loosely coupled)
musical sources.

•

(A)
(T)

(I)

(P)

Figure 1: The 4D structure space of computational music

This observation leads to the development of application specific languages,
dedicated to music programming, that are based on generic and well-defined
programming language paradigms. For instance, the versatile DSP program-
ming language Faust [6] is based on the synchronous programming paradigm of
languages such as Lustre or Esterel. The domain-specific language Euterpea [8],
embedded in the typed functional language Haskell [9], is another example.

These languages provide strong abstraction design principles that can be
used efficiently when programming musical applications. Using such mathe-
matically well-defined programming languages increases both the efficiency of
the design and implementation process and the reliability of the resulting ap-
plication or system.

Modeling space and programming time

We aim at contributing to the development of these languages. We are more
specifically concerned with the following problem: coping with the combined
modeling/programming of musical time and space.

It is a common observation that music writing involves both sequential com-
position (in time) and parallel composition (in space) of musical objects. Pro-
gramming these two features will often amount to:

◃ space modeling (data structure): creating a (finite) vector of musical ob-
jects to be played in parallel, with one local player per musical objects,

◃ time programming (control flow): creating a (potentially infinite and evolv-
ing) list of musical objects to be played in sequence, with a single global
player for that list.

A priori, from a strict logical point of view, this is however not a necessity.
For instance, in Hudak’s proposal of polymorphic temporal media [7], the

spatial and temporal dimensions are already quite mixed. This tells us that
there is no real necessity no need to distinguish between spatial dimensions that
describe parallelism and time dimensions that describe execution flows. These
are just dimensions that together create the spatiotemporal space within which
music evolves.

4

Some recent modeling experiments [10, 1] even show that there is a math-
ematically well-founded model: tiling semigroups [15, 16], that allows for the
description of combinations of musical objects in both dimensions with a single
operator: the tiled product.

Towards (musical) model based programming

Our purpose is to examine to which extent and for what benefit such a tiled
product can be integrated in a programing language as a built-in programming
feature.

More precisely, every musical object is seen as a partial function m : S → D
from some spatiotemporal space S into some set D of musical values. The
domain dom(m) ⊆ S of such a musical object m describes the spatiotempo-
ral structure of that object and, for every x ∈ dom(m), the value m(x) ∈ D
describes the local musical state of that object at position x.

Then, given two musical objects m1 : S → D1 and m2 : S → D2, every
operation on these musical objects that aims at defining a new musical object
F (m1, m2) : S → D3 is decomposed as a sequence of two primitive operations:

◃ synchronization: defining the domain dom(F (m1, m2)) of the resulting
musical object as some generic combination dom(m1)⊕dom(m2) that tells
how the domains dom(m1) and dom(m2) are translated to be positioned
one relative to the other with possible overlaps,

◃ fusion: defining how the new musical states are defined on each position
of the resulting domain from the local musical states of the translated
musical objects m1 and m2.

Doing so, we somehow aim at generalizing to spatiotemporal structures the
notion of spatial programming that is already emerging in bioinformatics system
modeling or musical structure analysis [2, 3].

A study focussed on discrete and regular musical objects

In this paper, the musical objects under study are discrete, e.g. notes or chords,
and regular, i.e. with integer durations. Possible extensions of the work pre-
sented here, either to musical objects with continuous domains as in audio pro-
cessing, or to irregular musical objects built on atomic elements with arbitrary
duration, as in [7], are left for further studies.

2 Strings and streams for music modeling

In this section, we review some of the basic features of the (finite) string and
(infinite) stream data types that can be used in music programming. Then,
by taking some examples from music, we show how strings and streams fail to
satisfy some compositional properties music system designers may expect when
modeling music.

5

From now on, let D, D1, D2, etc., be some alphabet types. Elements of a
type D will be the elements of the strings and streams that we handle.

As far as interpretation in music is concerned elements of type D are treated,
to keep things simple, as musical atoms of duration one. It follows that the index
of every element (musical atom) in a string, a stream, or even a tiled stream
as defined in the next section, is also seen as the (relative) date at which that
musical atom starts. The first element in a string or a stream, at position 0,
thus starts at the (relative) date 0.

2.1 Strings in music programming

Strings (or equivalent data types) are probably one of the basic data-structure
one may use in music programming as shown for instance in the libAudioStream [19].
Since we propose below to extend this data type, let us first review the defini-
tions related to strings.

By D-strings we mean here any finite (possibly empty) list of elements of
type D. A D-string is thus a mapping of the form m : [0, k − 1] → D where
[x, y] refers to as the interval set of integers {x, x + 1, · · · , y} when x ≤ y and
the empty set otherwise, and where k ∈ N, from now on denoted by |m| is the
length of the string.

The concatenation product (m1 · m2) of two D-strings m1 and m2 (denoted
by :+: in [7]) is defined as the string obtained by putting string m2 right after
string m2 hence with |m1 · m2| = |m1| + |m2|, that is, for every k ∈ [0, |m1| +
|m2| − 1],

(m1 · m2)(k) =

{

m1(k) if 0 ≤ k < |m1|
m2(k − |m1|) if |m1| ≤ k < |m1| + |m2|

Example 2.1 Our running musical example is the following bebop tune, de-
picted in Figure 2, that has already been considered in [10]. A simple analysis

!! " !# $! ! ! !% &&& ' " ! !! "! ! !! ! ! ! ! ! ! !! " !# $

! ! ! "! !5 % &&& !# (! ! " !
#! ! ! ! !) !& !" ! *

Figure 2: My little suede shoes (C. Parker, 1951)

of the musical structure of that song shows that it is composed with three repe-
titions of a first melodic line, depicted in Figure 3, that is followed by a second
melodic line, depicted in Figure 4. Given a data type D that simply corresponds

!
"#""""

" """"

Figure 3: A first melodic line m1

6

to notes and silences of duration one eighth, we can encode these melodic lines as
two D-strings m1 and m2 with the respective lengths |m1| = 11 and |m2| = 15.

!
"

#""$"% "&"# """"

Figure 4: A second melodic line m2

Of course, for the second melodic line, we assume that there is some special
symbol in D that merely means “keep on playing the same note” in order to
encode the quarter notes and the dotted quarter note.

The entire melodic line is then encoded by the string m defined by m =
m1 · cs5 · m1 · cs5 · m1 · cs1 · m2 where the constant strings csk describe strings of
silences of length k. The structure of such a concatenation can be depicted as
in Figure 5 with a rhythmical count (in numbers of eighths) starting at zero.

0 11 16 27 32 43

44

59

m1 cs5 m1 cs5 m1 cs1 m2

Figure 5: The structure of the complete melodic line

An immediate remark is that, in this concatenation example of the first and
second melodic lines, we have to insert silences of various length. Doing so, the
general structure of the entire melodic line, stated as “three times melody m1

followed by melody m2” is a little lost.
Continuing our example, if we want to play twice that melody, then we have

to construct the melodic line mm defined by mm = m · cs5 · m. Again, this
encoding is definitely lacking musical sense. No musician will ever pay attention
that 5 eighth silences that are needed here. Indeed, musicians synchronize on
music bars.

Everything looks as if the musical concatenation of melodies implicitly de-
scribed in Figure 2 is not a simple string concatenation.

2.2 On musical anacrusis and related notions

In musical terms, as already observed in [10], both the first and the second
melodies are built upon the notion of anacrusis, that is, a note or series of
notes that comes before the first complete measure of a melody. It prepares the
listener’s ears for the first beat of the next measure (also called downbeat).

This notion leads to distinguishing the first note of a melody, referred to as
its effective start, from its first downbeat, referred to as its logical start. By
logical we mean here logical with respect to the underlying time signature.

Similar phenomena also occur at the end of the melodic lines depicted in
Figure 3 and Figure 4. This is especially true in Bebop style. The last notes

7

of these melodies are played right before the bar in order to emphasize the next
strong beat, even though silent.

In other words, some amount of silence does conclude the underlying rhythm.
There is thus a need to distinguish the effective stop from the (rhythmically)
logical stop.

A more accurate description of these melodic lines is depicted in Figure 6
with an entire measure of silence added at their ends.

!"
#$####

####

!"
#

$##%#& #'#$ ####

Figure 6: The completed second melodic line

The last four measures of the entire melody (with an added anacrusis) are then
better described, with some overlaps, as depicted in Figure 7. In that figure,

m1 cs8

m2 cs8

a1 logical play

a2 logical play

Figure 7: Sequential composition of plays

anacrusis are marked a1 for m1 and a2 for m2. It shows that the meaning of
the timed preposition before (resp. after) for the string data type is not the
meaning it has in music.

2.3 Streams in music programming

Streams, that is, (potentially) infinite sequences of values, are often used in
music to model audio signals as in Faust [6]. They also appear in Haskell [9]
via the lazy evaluation mechanism. Again, as we propose below to extend this
data type, let us first review the definitions related to streams.

By D-streams we mean here an infinite list of elements of some type D. A
D-stream is thus a mapping s : N → D. The main operation on streams is the
parallel product (denoted by :=: in [7]). For every D1-stream s1 and D2-string
s2, the parallel product

s1|s2 : N → D1 × D2

of the two streams s1 and s2 is defined, for every k ∈ N, by

(s1|s2)(k) = (s1(k), s2(k))

8

Observe that, we have (s1|s2) ≃ (s2|s1), i.e. the parallel product is, up to
isomorphism, commutative.

With both strings and streams, we also have a mixed product (denoted by ::)
that takes one D-string m and one D-stream s as inputs and that produces the
D-stream m :: s obtained by placing the string m in front of the stream s, i.e.
the stream m :: s is defined, for every k ∈ N, by

(m :: s)(k) =

{

m(k) if 0 ≤ k < |m|
s(k − |m|) if |m| ≤ k

Example 2.2 (2.1 continued) Going back to our musical example, given a
constant D-stream nullD that is defined as the silent stream defined, for every
k ∈ N, by nullD(k) = 0D for some elementary silence 0D. Then, the operation
defined above allows for converting the entire melody m in Figure 2 into the
D-stream s = m :: nullD.

A priori, playing the melodic stream s in together with another stream s′ –
say a bass line – amounts then to defining the parallel stream p = s|s′. However,
for reasons similar to the string case examples with anacrusis, such a product
is not satisfactory because it assumes that the two streams effectively start at
the same logical time.

It may be the case, for instance, that the stream s′ of the bass line starts
right after the first bar. In that case, what we want to build is defined as the
parallel stream p = s|(cs3 :: s′), the length of the silence cs3 being defined by
some comparison between the musical nature of s and s′. Such a situation is

s
s′

logical start

effective start

Figure 8: Parallel composition of plays

depicted in Figure 8.
It may also be the case that the bass line actually starts one measure before.

Then, the correct parallel play is rather defined as p = (cs5 :: s)|s′.

Again, we fail to capture the accurate musical nature of the melodic lines
we aim at encoding. The parallel product of two streams does not match the
intended notion of parallel product of melodies a composer or a musician may
wish to use. Indeed, with such an encoding the intended parallel composition
depends on the properties of the composed streams s and s′: it is not uniformly
defined as one would expect.

In other words, the meaning of the prepositional phrase at the same time
that is induced by the stream data type is not the more subtle meaning it may
have in music.

9

3 From strings and streams to tiled streams

In the examples studied in the previous section, either with strings and streams,
everything looks as if we need additional information (e.g. synchronization
markers) to tell how these structures are composed either in a sequential or in
a parallel musically accurate way.

This is done by embedding both strings and streams types into more general
structures: tiled streams, with an associated tiled product. Then, it is shown
that both strings catenation or streams parallel product are particular cases of
tiled stream product.

3.1 Tiled streams

Simply said, a tiled stream is a bi-infinite sequence of elements with two distin-
guished synchronization marks positioned between elements.

Formally, a tiled D-stream is modeled as a mapping t : Z → D of values of
type D and a synchronization length d ∈ N. The first synchronization mark in
a tiled D-stream is always assumed to be right before the element at index 0.
The second synchronization mark is always assumed to be at distance d from
the first, that is, right before the element at index d.

In order to keep notation simple, we just write t : Z → D for such a D-stream
and we write d(t) ∈ N for its synchronization length/duration.

Remark 3.1 Playing in real time a tiled stream t will amount to choosing a
real date t0, and playing, one after the other, the musical event t(k) at the date
t0 + k for all k ∈ Z. In other words, indices in tiled streams correspond to
(possibly negative) date relative to origin index 0. As for strings or streams,
when element indices are seen as dates, they are always understood as the start
date of the corresponding element in the tiled stream.

Definition 3.2 (Synchronization and realization intervals) We define, over
integers seen as (relative) dates, the synchronization interval of a tiled stream t
to be the interval [0, d(t)].

Then, assuming that D is equipped with a distinguished element 0D that acts
as a default (silent) value. We define a realization interval of the tiled stream t,
to be any non empty (integer) interval [b, e] ⊆ Z, i.e. namely beginning and
ending dates, such that [0, d] ⊆ [b, e] with t(k) = 0D for every k /∈ [b, e].

This notion of realization interval is extended to the infinite by completing
Z with a least element −∞ and a greatest element +∞.

Such a tiled stream with finite realization interval, as in most examples
pictured later, is depicted in Figure 9.

Remark 3.3 Pursuing the analogy with musical notation, synchronization marks
can be seen as bars in music score, all events or notes before the first mark seen
as anacrusis, all events or notes after the second being conclusive.

10

-2-3 0 2 4 6 8 10 12 13

t

realization interval

synchronization interval

Figure 9: A typical tiled stream with anticipated start and late end

The tiled product, defined below, tells how two tiled streams are to be po-
sitioned one after the other. Since tiled streams are bi-infinite this implies that
the tiled product induces overlaps. The tiled product is thus both a sequential
and a parallel product.

Formally, for every tiled D1-stream t1 and D2-string t2, the tiled product
t1 ; t2 of the two tiled streams t1 and t2 is the D1 × D2-tiled stream defined with
the synchronization duration d(t1 ; t2) = d(t1) + d(t2) and

(t1 ; t2)(k) = (t1(k), t2(k − d(t1)))

for every k ∈ N. An example of tiled product is depicted in Figure 10. It is an

t1
-3 0 8 13

t2
-2 0 4 8

t1

t2
-3 0 8 12 16

resulting synchronization interval of length d(t1) + d(t2)

resulting effective interval

Figure 10: The tiled product of t1 and t2

easy exercise to check that, up to the associativity isomorphism on basic types
cartesian product, the tiled product is associative.

Remark 3.4 The fact that the two synchronization marks may coincide in a
tiled stream only indicates that the role of that musical part is to be synchro-
nized (on its first synchronization mark) before being launched/played. It does
not take part in the underlying, more global, synchronization/time positioning
process.

11

3.2 From musical strings to musical tiled streams

Going back to Example 2.1, let m1 and m2 be the D-string defined in Section 2.1.
We encode the first melodic line in Figure 3 by the tiled stream t1 defined, for
every k ∈ Z, by

t1(k) =

{

m1(k + 3) if − 3 ≤ k < |m1| − 3
0D (otherwise)

with synchronization duration d(t1) = 16, and we encode the second melodic
line in Figure 4 by the tiled stream t2 defined, for every k ∈ Z, by

t2(k) =

{

m2(k + 7) if − 7 ≤ k < |m2| − 7
0D otherwise

with synchronization duration d(t2) = 16. Then, defining the entire melodic
line in Figure 2 just amount to perform the tiled products:

t = t1 ; t1 ; t1 ; t2

that simply encodes our initial musical analysis, i.e. three times the first melodic
line followed by one time the second melodic line.

Remark 3.5 The resulting model, that can be depicted much as in the style
of Figure 7 above, has four parallel voices. Strictly speaking, we need now
to merge these four voices into a single one, possibly, in the general case, by
allowing chords instead of single notes. Such a merge operator is defined in
Section 3.5 below.

As detailed in Section 4.3 below (see Example 4.9), this merge is equivalently
defined by the T -calculus program p = t1 + t1 + t1 + t2.

3.3 Synchronization reset and co-reset

We also aim at embedding streams into tiled streams. In order to do so, we
extend the tiled stream data type with two additional operators on tiled streams
that essentially amount to (re)set the synchronization length of tiled streams to
zero.

Definition 3.6 (Tiled stream reset and co-reset) For every tiled D-stream t,
the synchronization reset R(t) and the synchronization co-reset L(t) of the tiled
D-stream t are defined by d(R(t)) = d(L(t)) = 0 and, for every k ∈ Z, by

R(t)(k) = t(k) and L(t)(k) = t(k − d(t))

These operators are named L and R in accordance to their link with left and
right Green’s classes in (inverse) semigroup theory (see e.g. [12] for an example
and [17] for the general theory). They are depicted in Figure 11.

The most basic application of reset and co-reset operators is the generic join
and fork operators one can derive from them as depicted in Figure 12. The fork

12

-3 0 8 13

t

-3 0 13

R(t)

-11 -8 0 5

L(t)

Figure 11: Reset R(t) and co-reset L(t) of a tiled stream t.

t1 t2

R(t1)
t2

fork(t1, t2) = R(t1); t2 join(t1, t2) = t1; L(t2)

t1

L(t2)

Figure 12: Derived fork and join operators.

and join operators are not commutative. Indeed, the tiled stream fork(t1, t2)
inherits from the logical interval of t2 while the tiled stream fork(t2, t2) inher-
its from the logical interval of t1. A similar remark holds for join(t1, t2) and
join(t2, t1).

Though not explicitly used in the sequel, the type of asymmetric parallel
synchronization that is handled by the fork or the join operators is implicitly
used in most examples below.

3.4 From musical streams to musical tiled streams

We are now ready to solve the compositionality problems encountered in Sec-
tion 2.3 when modeling music with streams, illustrated in Section 2.3.

Let t be the tiled stream t defined in Section 2.3 that encodes the melodic
line in Figure 2. Let t′ be another tiled stream t′ that models some bass line.

Assuming that t′(0) models the first eighth note or silence of the first bar of
that bass line, then, the parallel play p of both the melodic line and the bass
line is simply modeled by

p = R(t) ; R(t′) = R(fork(t, t′)) = R(fork(t′, t))

In other words, since the logical start of the lead melody and the bass line are
encoded in their respective tiled stream encodings, their parallel product just
amounts to synchronizing them on their logical starts.

Remark 3.7 More generally, with the proposed model of tiled streams, we
eventually internalize in each model some synchronization information that is

13

needed to position in time two melodic lines, be them put in sequence, as with
strings, or in parallel as with streams. Doing so, the tiled product is a com-
position operator that has features of both a sequential product and a parallel
product.

3.5 Strings and streams embeddings

In [7] it is proved that sequential and parallel products together with silences are
enough to encode any musical value/musical score. In this section, we show that
both strings and streams can be embedded into tiled streams thus inheriting of
such a modeling completeness property.

Prior to defining and proving the embeddings, we first need to formally
define the merge function. For such a purpose, we assume that every basic type
D is equipped with a binary associative operator + with a neutral element 0.
Then, for every tiled D × D-stream t, we define the tiled D-stream merge(t) by
d(merge(t)) = d(t) and, for every k ∈ Z, by

merge(t)(k) = π1(t)(k) + π2(t)(k)

where π1(t) : Z → D (resp. π2(t) : Z → D) is the first projection (resp. the
second projection) of t, that is, the tiled D-stream with the same synchronization
length as t and such that t(k) = (π1(t)(k),π2(t)(k)) for every k ∈ Z.

For strings, let ϕ be the mapping that maps every D-string m to the tiled
D-stream ϕ(m) defined by : d(ϕ(m)) = |m| and, for every k ∈ Z, defined by
ϕ(m)(k) = m(k) when 0 ≤ k < |m| and by ϕ(m)(k) = 0D otherwise.

Lemma 3.8 (Strings embeddings) The mapping ϕ from D-strings to tiled
D-streams is a one-to-one homomorphism that maps string concatenation to
(merged) tiled product, i.e. for every D-strings m1 and m2 we have

ϕ(m1 · m2) = merge(ϕ(m1) ;ϕ(m2))

For streams, let ψ be the mapping that maps every D-stream s to the tiled
D-stream ψ(s) defined by d(ϕ(s)) = 0 and, for every k ∈ Z, by ψ(m))(k) = s(k)
when 0 ≤ k and by ψ(m))(k) = 0D otherwise.

Lemma 3.9 (Streams embeddings) The mapping ψ from D-streams to tiled
D-streams is a one-to-one homomorphism that maps stream parallel product to
tiled product, i.e. for every D-stream s1 and s2 we have

ψ(s1|s2) = ψ(s1) ;ψ(s2)

In particular, when restricted to tiled streams with zero synchronization length,
the tiled stream product is, up to isomorphism, commutative.

We also observe that these embeddings of strings and streams into tiled
streams preserve mixed products as well.

Lemma 3.10 (Mixed embeddings) For every D-string m and D-stream s,
we have

ψ(m :: s) = R(merge(ϕ(m) ;ψ(s)))

14

4 Static (out of time) T -calculus

In the previous section, we have defined tiled streams and the related notion
of tiled product. We have illustrated their relevance for being used in music
modeling.

We aim now at defining an associated programming languages that allows
for generalizing this approach to tiled streams of arbitrary type with a buit-in
uniform way of lifting every function on elements of a given type to a function on
tiled streams built over the same type, tiled stream product being a particular
cas of such a lift.

We present in this section a static version of the T -calculus, that is, the
T -calculus with no I/O mechanisms. Effectivity issues, that is, how to compute
and run T -programs in real time, are adressed in Section 5.

4.1 Syntax

Basic constants and types. We assume that there is some set of basic
types such as booleans: bool, positive integers: natural, or sets of events:
eventSet(E) for some (finite) predefined set of events E, etc.

We assume, in a way somehow related with the semantics of the none con-
struct in [7], that every basic type D we use is equipped with a sum + and a
neutral element 0 ∈ D for that sum, i.e. such that x + 0 = 0 + x = 0 for every
x of type D.

Though this is not a general necessity, the above types are also and even
uniformly seen as semiring structures with (infix) associative sum +, e.g. union
for event sets, (infix) associative product * that distributes over sum, e.g. in-
tersection for event sets, with a zero 0 that is neutral for sum and absorbant for
product, e.g. empty set for event sets, and a unit 1 that is neutral for product,
e.g. the set E of all events for event sets.

They are associated with constants. In particular, we use the notation
{a,b,c} for the set of three events a, b and c ∈ E. To keep notations sim-
ple, we drop any subscript (or any other mark) that may refer to the type of
these constants and operators though they are implicitly considered as unam-
biguously typed.

Programs. A T -calculus program p is just a term built by means of the pro-
gram constructs described in Figure 13 where c is a constant, x is any variable,
f is any n-ary function symbol, ⊤ any binary operator, ; is the synchronization
product operator already presented in the previous sections, and where p1, p2,
. . . , pi are any syntactically simpler programs. The last two constructs, op-
erators and synchronization product, derive from the others and will thus be
treated as such.

As a matter of simplification, we define no notion of variable scope. Thus
we also assume that:

15

p ::= – primitive constructs –
c (constant)

| x (variable)
| f(p1, p2, · · · , pn) (function lifting)
| x = p1 (declaration)
| R(p1) (sync. reset)
| L(p1) (sync. co-reset)

– derived constructs –
| p1 op p2 (operator)
| p1 ; p2 (synchronization product)

Figure 13: Static T -calculus syntax

◃ For every program p, for every variable x occurring in p, there is at
most one subprogram of p of the form x = px with px from now on
called the definition of x in the program p.

4.2 Static synchronization types

Every T -calculus program will be interpreted as a tiled D-stream, also called
an α-stream, when α is the type of elements of D. As there shall be no surprise
with the typing of the elements of tiled streams, we concentrate on the typing
of the tiled streams resulting from T -calculus programs.

More precisely, for every T -program p, we define the typing relation

Γ ⊢ p : (d,α)

that means the program p in environment Γ is a tiled α-stream with synchroniza-
tion length d. The typing environment Γ tells what the types of the variables
that occur in p are. It is represented as a set of pairs of the form (x, (d,α)). We
also write αc for the basic type of the constant c. This implicitly means that
every constant is written in such a way that its type is unambiguous. However,
in all examples and rules given below, we keep the notation simple with constant
0 meaning the constant 0α for any of the basic type α. The typing relation is
inductively defined by the typing rules in Figure 15.
Additionally, we provide in Figure 16 the derived rules associated with the last
two program constructs.

Remark 4.1 As one may have expected, the typing rule for a binary infix
operator op derives from the mapping rule in Figure 15. The typing rule for the
synchronization product p1 ; p2 also derives from that same rule when applied

16

◃ Constants:
Γ ⊢ c : (1,αc)

◃ Variables:
(x, (d,α)) ∈ Γ
Γ ⊢ x : (d,α)

◃ Mapping:
Γ ⊢ pi : (di,αi) (i ∈ [1, n])

Γ ⊢ f(p1, · · · , pn) : (d1 + · · · + dn,α)
with f : α1 × α2 × · · · × αn → α

◃ Declaration:
Γ ⊢ x : (d,α) Γ ⊢ p : (d,α)

Γ ⊢ x = p : (d,α)

◃ Sync. reset:
Γ ⊢ p : (d,α)

Γ ⊢ R(p) : (0,α)

◃ Sync. co-reset:
Γ ⊢ p : (d,α)

Γ ⊢ L(p) : (0,α)

Figure 14: Static type rules

◃ Operator:
Γ ⊢ p1 : (d1,α1) Γ ⊢ p2 : (d2,α2)

Γ ⊢ p1 op p2 : (d1 + d2,α3)
with op : α1 × α2 → α3

◃ Sync. product:
Γ ⊢ p1 : (d1,α1) Γ ⊢ p2 : (d2,α1)

Γ ⊢ p1 ; p2 : (d1 + d2,α1 × α2)

Figure 15: Derived static type rules

to the identity mapping idα1×α1
: α1 × α1 → (α1 × α1), one per types α1 and

α2, hence leading to the derived rule described in Figure 16.

Theorem 4.2 For every program p, for every environment Γ, there is at most
one type (d,α) such that Γ ⊢ p : (d,α). Moreover, it is decidable if there exists
Γ and (d,α) such that Γ ⊢ p : (d,α).

Proof. Deciding of the existence of the basic type α is standard. It thus poses
no difficulty. One may even imagine to allow polymorphic types as in languages
like ML or Haskell. Provided Γ is given, uniqueness follows from a bottom up
application of typing rules on programs.

Deciding of the existence of synchronization length typing easily reduces to

17

the resolution, on positive or null integers, of a finite system of linear fixpoint1

equations.
More precisely, given a program p and an enumeration {pi}i∈I of its sub-

terms, writing {zi}i∈I for the synchronization length of the sub-term pi, the
inference rules induce a system of equations of the form

zi =
∑

j∈I

ai,jzj + bi

on per i ∈ I, with integer ai,j ≥ 0 for every j ∈ I and bi ≥ 0. These equations are
then solved by Gaussian elimination with simplification of the following form:
if zi ̸= 0 above then either zi = 1 and we necessarily have 0 =

∑

j ̸=i ajzi,j + bi

which entails further simplifications, or zi > 1 and the system has no solution. ✷

Example 4.3 The program x1 = c + R(x1) can be typed with synchroniza-
tion length 1 since d(c) = 1. The program x2 = L(x2) + c + R(x2) can be
typed similarly.

On the contrary, neither the program x3 = c + x3 nor the program x4 = x4
+ c + x4 can be typed for they would have a right- or bi-infinite synchronization
interval.

4.3 Semantics

Let p be a program. Let Xp be the set of variables that occur in p. Let Γ be a
type assignment of variables such that Γ ⊢ p : (d,α).

A valuation E for p is a map that associates every variable x ∈ Xp of p
with a tiled stream E(x). It is coherent with Γ when, for every variable x ∈
Xp, if (x, (dx,αx)) ∈ Γ then the tiled stream E(x) is a tiled αx-stream with
synchronization length dx.

A semantics for the program p under the valuation E , assumed to be coherent
with Γ, is then a mapping [[]]E that maps every subprogram q of the program p to
a tiled stream [[q]]E such that the fixpoint property (Y) described in Figure 17 is
satisfied – where, as already mentioned, px is the unique term such that x = px

occurs in the program, as well as the rules described in Figure 18.

(Y) For every x ∈ Xp we have E(x) = [[px]]E .

Figure 16: Declaration soundness rule

Remark 4.4 As already announced in the introduction, operations on tiled
streams are indeed defined as synchronizations followed by fusions. This be-
comes especially clear in the (tiled stream) lifting of a mapping f : α1 ×α2 → α3

1thanks to the variable declaration rule

18

◃ Constants: d([[c]]E) = 0 and

[[c]]E(k) =

{

c when k = 0,
0 when k ̸= 0,

◃ Variable: [[x]]E(k) = E(x)(k),

◃ Mapping: d([[f(p1, · · · , pn)]]E) =
∑

i∈[1,n] d([[pi]]E)

and [[f(p1, · · · , pn)]]E(k) = f(v1, · · · , vn)

with vi = [[pi]]E
(

k −
∑

1≤j<i d([[pj]]E)
)

,

◃ Declaration: d([[x = px]]E) = d([[px]]E) and

[[x = px]]E(k) = [[px]]E(k)

◃ Sync. reset: d([[R(p1)]]E) = 0 and

[[R(p1)]]E(k) = [[p1]]E(k)

◃ Sync. co-reset: d([[L(p1)]]E) = 0 and

[[L(p1)]]E(k) = [[p1]]E(k + d([[p1]]E))

for every k ∈ Z.

Figure 17: Static semantics rules

to a program construct of the form f(p1, p2) on some tiled α1-stream p1 and
some tiled α2-stream p2. Indeed, computing f(p1, p2) amounts to:

◃ Synchronization (in time): computing the synchronized product p1 ; p2 on
the tiled α1- and α2-streams passed as arguments,

◃ Fusion (in space): applying mapping f in a point wise fashion on the
resulting tiled α1 × α2-stream in order to build the expected α3-stream.

This feature already appeared in the typing rules in Figure 15. It has been made
explicit in Figure 18.

The semantics of infix operators and synchronized products just derives from
the primitive semantics rules stated in Figure 18. The corresponding rules are
stated in Figure 19.

19

◃ Operator: d([[p1 op p2]]E) = d([[p1]]E) + d([[p2]]E) and

[[p1 op p2]]E(k) = [[p1]]E(k) op [[p2]]E(k − d([[p1]]E))

◃ Synchronization product: d([[p1 ; p2]]E) = d([[p1]]E) + d([[p2]]E) and

[[p1 ; p2]]E(k) = ([[p1]]E(k), [[p2]]E(k − d([[p1]]E)))

for every k ∈ Z.

Figure 18: Derived static semantics rules

Example 4.5 Continuing Example 4.3, the tiled stream associated to x1 is
uniquely defined. It equals c when k ≥ 0 and equals 0 when k < 0. The tiled
stream associated to x2 is also uniquely defined and equals c everywhere.

As another example, with uniquely defined semantics, the program x3 =
L(x3) + 0 + 1 + R(x3) evaluates into a tiled stream of alternating 0 and 1.

On the contrary, a program like x = x has many possible semantics, one per
valuation of x although it can be typed. A program like x = R(2 + x), that
can also be typed, has no semantics since its value on 0 shall be infinite.

We easily check that:

Lemma 4.6 When E is coherent with Γ then, for every subprogram p1 that
occurs in p, if Γ ⊢ p1 : (p1,α1) then [[p1]]E is a tiled α1-stream with d([[p1]]E) = d1.

4.4 Iterative semantics

Since a program may have zero, one or several semantics as illustrated in Ex-
ample 4.5, we privilege below a static iterative semantics that, when defined,
provides a unique semantics.

The distance between two tiled streams s1 and s2 of the same type is defined
to be d(s1, s2) = 1 when d(s1) ̸= d(s2) and, when d(s1) = d(s2), to be either
d(s1, s2) = 0 when s1 = s2 or to be d(s1, s2) = 1/2n otherwise where n is the
greatest integer such that, for all −n < k < n we have s1(k) = s2(k). This
metric is extended to environments by letting d(E1, E2) = max{d([[x]]E1

, [[x]]E2
) :

x ∈ Xp}. The resulting topology is called the prefix topology.
Given a typed program p, let Ep,0 be the valuation that maps every variable x

that occurs in p to the constant tiled stream 0. For every n ∈ N, let then Ep,n+1

be the valuation defined, for every variable x ∈ Xp, by Ep,n+1(x) = [[px]]Ep,n

for the definition px of x in p, where [[px]]Ek
is computed following the rules of

Figure 18.

Theorem 4.7 When {Ep,k}k∈N converges towards a limit Ep then, for every
x ∈ Xp we have [[p]]Ep

= Ep(x) and [[]]EP
satisfies the semantics rules of FIgure 18.

20

In that case, we thus say that [[p]]Ep
is the iterative semantics of p. We aim now

at finding simple conditions that guarantee its existence and its computability
in a real time fashion.

Remark 4.8 In our application perspectives as in the proposed examples, it
makes sense to define 0 as the default value for it corresponds to silence.

4.5 Out of time musical examples

Let E be a set of MIDI-like musical event defined as follows. For every note N,
there is an event N for the noteOn event for that note and an event Nc for its
continuation event noteCont. Of course, as in MIDI, by note we mean a pitch
class but possibly extended with a track number, an instrument number, an
energy level, etc. The main interest of such a variant is that the empty event
set 0 denotes silence. Then, as shown in the following examples, melodic lines
can easily be encoded by tiled streams of type eventSet(E). In these examples,
operator ∗ denotes the (tiled extension of the) intersection of event sets and
operator + denotes the (tiled extension of the) union of event sets.

Example 4.9 (Simple melodies) We assume that the elementary durations
of events are eighth notes. Writing <N:d> for every note N for the program
{N}+{Nc}+· · · +{Nc} when Nc is repeated d − 1 times, then the tiled stream

a = <C4:2>

defines the note C4 with a duration of two eighths, that is a quarter. In that
case, the synchronization interval of that program correspond to the interval
when the note is played.

This notation easily extends to event sets, hence < 0 : 6 > denotes a rest of
duration 6 eighths (and same synchronization duration). Then, the tiled stream

b = L(B3) + <C4:2> + <0:6>

simply encodes a 4 beats measure composed of one quarter note C4 followed by
silences, that is preceded by an anacrusis made of an eighth note B3.

Such a fairly simple example clearly shows how all finite examples that are
given in Section 2 can be encoded in our proposal. The binary function merge
that is used in Section 3 is simply defined by merge(p1; p2) = p1 + p2 for every
tiled stream p1 and p2.

Example 4.10 (An infinite canon) Another example is the infinite canon
one can be built as follows. Given four melodic lines m1, m2, m3 and m4 built
with the techniques shown above assumed to be of the same (non zero) synchro-
nization length. Let us consider the program defined by

y = (x = m1+R(m2+m3+m4+x))
+ x + x + x + R(y)

21

In that construction, using the reset operator on m2+m3+m4+x ensures that x has
the same synchronization as m1. Then, for a similar reason, the synchronization
length of y is four times that of m1 and thus, since all melodic lines have the
same synchronization length, this canon can indeed be depicted, before point-
wise summation, as in Figure 20. Observe that such an encoding even allows

m1 m2 m3 m4 x
m1 m2 m3 m4 x

m1 m2 m3 m4 x
m1 m2 m3 m4 x

Figure 19: The canon before merge

for canons built on melodic lines with anacrusis and/or late conclusive notes or
sequences.

Example 4.11 (Local stream processing) Last example, we show how lo-
cal stream processing function can be encoded in our calculus. Let

F : (Z → α1) → (Z → α2)

be a (bi-infinite) stream processing function assumed to be locally computable,
i.e. there is m and n ∈ N with m ≥ n and a mapping g : αn+1

1 → α2, such that,
for every input stream s : Z → α1, for every k ∈ Z,

F (s)(k + m) = g(s(k), s(k + 1), · · · s(k + n))

i.e. F (s) is computed with delay m from a sliding window on s of length n + 1.
Then F can be encoded by the program defined as follows:

<0:m> + R(g(<0:0> + s;<0:1>+s;
<0:2>+s;...;<0:n>+s))

In that encoding, we choose to make the synchronization length of the resulting
tiled stream to be equal to m.

5 Dynamic (in-time) T -calculus

We aim now at analyzing more in depth our programming language proposal so
that it can handle outputs and inputs in real time.

Handling outputs in real time means first that a program need to be started
at some point, hence there must be a computable (relative) starting date before
which all values of the tiled stream computed by the program are known to be
0 (silent), i.e. the program (and its subprograms) must have a finite past.

22

Then, all processing must be finite and causal, that is, every output value
must only depends on current or finitely many past computed values that have
been memorized.

Handling inputs in real time means extracting on the fly, from real time
input streams (with absolute dates), some tiled streams (with relative dates)
that can be used at other place as partial echos of the recorded inputs.

For developing such analysis tools, we assume from now on that the program
p is well typed under some typing environment Γ. For the time being, we also
assume that the program p has no input, that is, every variable x ∈ Xp that
occurs in p has a (unique) definition px in p. The case of input is handled in
Section 5.4 below.

5.1 Synchronization profiles

We first aim at defining a type system that computes a possible realization
interval for the program p (see Definition 3.2) compatible with its iterative
semantics (see Section 4.4) in the case it admits one. This will induce a sufficient
condition for the program p to have a finite past.

Definition 5.1 (Synchronization profile) Let N̄ be the set of zero or positive
integers extended with a greatest element ∞. A synchronization profile for the
program p is a triple (l, d, r) ∈ N̄ × N × N̄ such that d is the synchronization
length of program p, i.e. Γ ⊢ (d,α) for some type α, and such that, for every
k ∈ Z, if [[p]]E(k) ̸= 0 then −l ≤ k ≤ d + r, with −l ≤ k (resp. k ≤ d + r) that is
true whenever l = ∞ (resp. r = ∞), i.e. interval [−l, d + r] ⊆ Z is a realization
interval of the program p semantics.

Before giving a set of rules to compute synchronization profile types, the
notion of synchronization profile itself, and the way it evolves in a sum, is
depicted in Figure 21.

Remark 5.2 The product of triples (l, d, r) · (l′, d′, r′) defined to be

(max(l, l′ − d), d + d′, max(r − d′, r′))

as depicted in Figure 21, is known to induce over the set N × N × N a monoid
structure, i.e. the product is associative and it has (0, 0, 0) as neutral element.

Moreover, this monoid is isomorphic to the submonoid of positive elements
of the free inverse monoid of one generator (see e.g. [17]). The synchronization
profiles, that also allows ∞ as left or right value, form a submonoid of the filter
completion of that monoid.

Generalizing this observation to all program constructs, we obtain the set
of rules depicted in Figure 22 where ∆ is an environment that associates every
variable to its synchronization profile.

23

l d r

p
p′

l′ d′ r′

p + p′

max(l, l′ − d) d + d′ max(r − d′, r′)

Figure 20: The synchronization profile of a tiled sum

We say that a profile (l, d, r) is smaller than a profile (l′, d′, r′) when l ≤ l′,
d = d′ and r ≤ r′. One can easily check that this is an order relation2. It is
extended point-wise to synchronization profile environment.

Lemma 5.3 The least synchronization profiles (and the corresponding envi-
ronment ∆) satisfying the rules describe in Figure 22 is computable. Moreover,
when ∆ ⊢ p : (l, d, r) with finite l, we know that for every k ≤ −l we have
[[p]]E = 0, that is, the program p is finite in the past.

Proof. The computability of synchronization lengths follows from the fact that
we assume that p is typed in a given environment Γ.

Computability of the left and right parts of a synchronization profile fol-
lows from the fact that the rules depicted in Figure 22 induce conjunctions of
inequalities of the form

li ≥ ci +
∑

j∈J

lj

which, whenever ci ̸= 0 and i ∈ J , implies that li = ∞. That fact allows for
accelerating the least solution computation that otherwise may be infinite. ✷

For instance, the program x = 1 + R(x) + 1 has the minimum synchro-
nization profile (0, 1, ∞).

5.2 Direct temporal dependencies

We aim now at finding simple (computable) sufficient conditions under which
the iterative semantics of the program p exists and can be computed in a causal
way.

Before providing a general solution, let us examine some examples.

2It is even the reverse order of the natural order of the underlying inverse monoid.

24

◃ Constants:
∆ ⊢ c : (0, 1, 0)

◃ Variables:
(x, (l, d, r)) ∈ ∆
∆ ⊢ x : (l, d, r)

◃ Mapping:
∆ ⊢ pi : (li, di, ri) (i ∈ [1, n])
∆ ⊢ f(p1, · · · , pn) : (l, d, r)

with l = max
(

li −
∑

1≤j<i dj

)

, d =
∑

i di,

and r = max
(

ri −
∑

i<j≤n dj

)

,

◃ Declaration:
∆ ⊢ x : (l, d, r) ∆ ⊢ p : (l, d, r)

∆ ⊢ x = p : (l, d, r)

◃ Sync. reset:
∆ ⊢ p : (l, d, r)

∆ ⊢ R(p) : (l, 0, d + r)

◃ Sync. co-reset:
∆ ⊢ p : (l, d, r)

∆ ⊢ L(p) : (l + d, 0, r)

Figure 21: Synchronization profile type rules

Example 5.4 Given a constant tile m with a non zero synchronization length
d, assume that p is a program of the form x = m + R(x). Then the program p is
causal since the value of x at any date k only depends on constant values from
m and on the value of x at instant k − d.

If the program p is of the form x = L(x) + m then, on the contrary, it is not
causal since the value of x at some date k may depends on the value of x at
instant k + d.

These examples show that we need to analyse the temporal dependencies
between objects that are handled by a program. This is done in two steps, first
by defining direct temporal dependencies and then by defining iterated temporal
dependencies.

Definition 5.5 (Direct temporal dependency mapping) Let δ be the map-
ping that maps every pair of subprogram q of p and every variable x ∈ Xp to the
set δ(q, x) ⊆ Z that is inductively defined by the rules in Figure 23, where we
denote d(q) ∈ N the synchronization length of any subprogram q and, for any
set X ⊆ Z and any n ∈ Z, we denote by X − n the set {x − n ∈ Z : x ∈ X}.

The mapping δ is clearly computable in finite time by a bottom up traversal of
the syntactic structure of the program p and only produces finite subsets of Z.

Example 5.6 Let p be the program x= 1 + R(1 + L(x)) that is depicted in

25

◃ Constants: δ(c, x) = ∅,

◃ Variable: δ(y, x) = ∅ when x and y are distinct
and δ(x, x) = {0} otherwise,

◃ Mapping: δ(f(p1, · · · , pn), x) =

⋃

1≤i≤n

⎛

⎝δ(pi, x) −
∑

1≤j<i

d(pj)

⎞

⎠ ,

◃ Declaration: δ(y = py, x) = δ(y, x),

◃ Sync. reset: δ(R(p1), x) = δ(p1, x),

◃ Sync. co-reset: δ(L(p1), x) = δ(p1, x) + d(p1).

Figure 22: Direct temporal dependencies rules

Figure 24, where, for the sake of simplicity we have omitted to picture the reset
operator. The computation of δ can then be illustrated as follows.

x

1
1

L(x)

etc. . .

etc. . .

Figure 23: Observing temporal dependencies

We have δ(1, x) = ∅ and δ(x, x) = {0}. Since d(x) = 1, by applying the
co-reset rule, we thus have δ(L(x), x) = {1}. By applying the mapping rule, we
have δ(1 + L(x), x) = {0} hence, by applying the reset rule, δ(R(1 + L(x)), x) =
{0} and thus

δ(1 + R(1 + L(x))
︸ ︷︷ ︸

px

, x) = {−1}

We easily check that the iterative semantics of p is well defined with, for every
k ∈ Z,

[[x]]E(k) =

{

0 if k < 0
[[x]]E(k − 1) + 1 if k ≥ 0.

In other words, on such a simple example, the direct temporal dependency
mapping δ tells us how x depends on itself.

26

In the more general case, we have:

Lemma 5.7 Let E be a valuation of the variables of Xp compatible with the
typing environment and satisfying the fixpoint property, i.e. E(x) = [[px]]E for
every x ∈ Xp. Then, for every subprogram q of p, there is a function

fq :
∏

{αy : y ∈ Xq, d ∈ δ(q, y)} → αq

with αq (resp. αy) being the basic type of q (resp. the basic type of y) such that,
for every k ∈ Z,

[[q]]E(k) = fq (E(y)(k + d) : y ∈ Xq, d ∈ δ(q, y))

Proof. Immediate from the definition of mapping δ. Indeed, direct temporal
dependencies are invariant under translation, and the rules stated in Figure 23
compute them for k = 0. ✷

5.3 Iterated temporal dependencies

The previous lemma yet does not say a word on the (causal) computability of
the program p. Indeed, nested or even mutually recursive definitions of variables
may occur in the program p.

Definition 5.8 (Iterated temporal dependency mapping) Let δ∗ be the
mapping that maps every pair of subprogram p and variable x to the set δ(q, x) ⊆
Z that is inductively defined as indicated in Figure 25 where, for every two sets

δ∗(q, x) = δ(q, x) ∪
⋃

y∈Xp

(

δ(q, y) + δ∗(py, x)
)

Figure 24: Iterated temporal dependencies

of integer X and Y ⊆ Z, we write X + Y for the set X + Y = {x + y ∈ Z : x ∈
X, y ∈ Y }.

The mapping δ∗ is also computable though it produces linear subsets of Z,
that is, finite unions of sets of the form {k1 +n∗k2 : n ∈ N} with k1 and k2 ∈ Z.

Theorem 5.9 Assume that for every variable x ∈ Xp that occurs in p the set
δ∗(x, x) only contained strictly negative values. Then the program p admits an
iterative semantics that is causal and with finite past.

Proof. (sketch of) Lemma 5.7 induces, via mapping δ, a finite set of equations
that relate, for every iteration step n ∈ N (see Section 4.4) the valuation En+1

with the valuation En.

27

Then, thanks to the hypothesis on δ∗, the least synchronization profile of
p cannot be left infinite, hence, by Lemma 5.3, there exists an index k0 before
which every subprogram of the program p evaluates to zero.

Then, by applying again the same hypothesis, we prove by induction that
there exists a strictly increasing sequence of integers {kn}n∈N ⊆ ZN such that,
for every m ≥ n, every variable x ∈ Xp, every k ≤ kn, Em(x)(k) = En(x)(k).
This proves boh the convergence and the causality of the iterative semantics.

The finiteness of the memory that is needed to compute [[p]]E follows from
the finiteness (and the translation invariance) of δ that is needed to compute
the semantics of the program p from the value of its variables (see Lemma 5.7). ✷

5.4 Monitoring inputs

We aim now at handling program inputs. An input is an infinite stream of some
type α that is started at some absolute date. Since our programs only handle
tiled streams, we need to see it as such.

There are many ways to convert an input stream into a tilled stream. Here,
we adopt a rather conservative (or pure) way that amounts to preserving trans-
parential referency: a given input tiled stream expression always has the same
evaluation, wherever it occurs in a program.

From the syntactical point of view, an input just appears as a free variable.
From the semantical point of view, following Section 3.5, we first assume that
such a variable denotes a tiled α-stream with zero synchronization length. Then,
the bi-infinite sequence associated to an input stream is assumed to be 0 before
the (relative) date zero. This relative reference date is also assumed, in absolute
time, to be equal to the real time occurrence date of the (relative) date zero of
the program itself. Then, the values from and after that date are equal to the
corresponding real time input values.

In other words, let i : Z → D be a real input stream potentially seen as a bi-
infinite stream indexed by absolute dates. Let xi be the free variable associated
to that input stream in the program p. Let t0 (resp. k0 ≤ 0) be the absolute date
(relative date) at which the program p is started. Then, the synchronization
profile of the tiled monitoring xi of the input stream i is assumed to be (0, 0, ∞)
and every valuation E on xi is defined, for every k ∈ Z, by

[[xi]]E(k) =

{

0 if k < 0
i(t0 + k − k0) if k ≥ 0

i.e. the input stream is monitored in real time from the relative date 0 of the
program.

Example 5.10 (Tiling input streams) Let a, b, c and d be four positive integer
constants and let x be a input tiled stream. We want to built out of x a finite
tiled stream y with synchronization profile (b, c, d) such that, under the iterative

28

semantics, for every k ∈ Z,

[[y]]E(k) =

⎧

⎨

⎩

0 if k < −(a + b)
[[x]]E(k + a + b) if −(a + b) ≤ k ≤ c + d
0 if c + d < k

In other words, we want to monitor the input x from its relative date from a to
a+b+c+d, with a resulting synchronization interval [0, c] for y that corresponds,
up to translation, to the interval [a + b, a + b + c] on x.

It occurs that this can be done by the following program

y = L(R(x)+<0:a+b>)
* (L(L(0)+ <0:a>+<1:b>)

+ <1:c> + R(<1:d>+R(0)))

Denoting by A(x) the first term of the product and by F the second term of
the product, such a monitoring is depicted in Figure 26 where, building A(x),

x etc. . .

A(x) etc. . .

F

y = A(x)∗F

a b c d

Figure 25: Tiling input x

we just aim at repositioning the beginning of the synchronization where needed
and where F act as a boolean filter with the adequate synchronization profile.

In other words, in the T -calculus, one can sorts of monitors that dynamically
create tiled streams wherever within input streams.

Remark 5.11 Most results stated above remain valid when extended with in-
puts. In particular, Theorem 5.9 now says that the class of causal T -calculus
programs with inputs, defined by its hypothesis, captures the class of deter-
ministic finite state sequential I/O-transducers on words (see e.g. [20]). Indeed,
the converse encoding of every such a finite state transducer into a T -calculus
program is easy. A single internal tiled streams suffices in order to encode the
sequence of transducer states in a run.

Observe that handling inputs may create new source of incoherence. For
instance, the program x + 1 + (x = y) with input y cannot be executed since
this amounts to output the tiled stream y one step before it is actually input.

29

A simple remedy to such an erroneous usage is to require that in the program
p, we only have negative or null iterated temporal dependencies in δ∗(p, y).

The exemple above also show a limitation of our proposal. The associated
synchronization profiles and position within the input streams must be statically
defined. Defining monitoring devices that conditionally create tiled stream out
of inputs is another and delicate issue that is left for further study. Indeed,
it would certainly break transparential referency for the resulting evaluation
of such a monitor would certainly depend on the real time these monitor are
activated.

Remark 5.12 Last, let us observe that the question raised by allowing some
conditional monitoring of input is much broader than one may expect. Indeed,
other approaches, rather orthogonal, also appear in music softwares like An-
tescofo [4] that are based on score followers.

Indeed, in such kind of softwares, score followers are used as intelligent input
monitors so that the distance from the current position to some conditional
input event can be predicted and updated at every steps. Then, thanks to some
mechanism of expansion/contraction of the execution timeline, these softwares
allow for defining forward synchronization mechanisms that, at first sight, may
seem to break causality.

6 Related work

The idea of distinguishing effective starts and stops from logical ones implicitly
appears in the programming language Loco [5] via the pre and post program
constructs. As far as the authors know, there has been no follow up to this
work.

More than two decades later, our proposal, that makes such an idea explicit
and formal, is based on the first author’s study of rhythm representations [10].
These ideas have then been developed in [1] and experimented in [14] in the
context of real-time performance with (tiled) audio signals.

The present work is also inspired by both the music description language
Elody [18] and the signal processing language Faust [6]. It can be seen as a
proposal for a (tiled) extension of these two functional languages.

It is worth mentioning that the underlying algebraic concepts is currently
studied quite in depth in the abstract setting of formal language and inverse
semigroup theory [12, 13, 11]. Since (regular) languages of tiles can be inter-
preted as (simple) program types, we still expect more interconnections between
these two research axis.

It must be added that, though orthogonal, our proposal has many connection
points with the DSL Euterpea [8], and, more specifically, Hudak’s proposal for
temporal polymorphic media [7]. This work gives many clues for extending the
present proposal to tiled streams of elements with durations: a study yet in
progress.

30

7 Conclusion

We have described an embedding of music strings and streams into tiled streams.
It is based on a tiled signal algebra that allows for a more accurate description
of typical musical constructions such as play together or play one after the other.

The associated language, the T -calculus, is thus proposed as an implemen-
tation of these ideas. Of course, it is yet not a full programming language
but indeed only a calculus. Extending our proposal with (dynamic) conditional
synchronization duration and multi time scale handling is a clear necessity for
achieving a truly modular programming language for time sensitive intermedia
systems.

Acknowledgment

A preliminary version of this work benefited from numerous comments and
advices from the participants of the INEDIT3 workshop held in Bordeaux in
spring 2013. The next preliminary version benefited from even more numerous
and invaluable comments and criticisms from the anonymous referees of the
FARM workshop. The authors wish to express deep gratitude to all of them.

References

[1] F. Berthaut, D. Janin, and B. Martin. Advanced synchronization of audio
or symbolic musical patterns: an algebraic approach. International Journal
of Semantic Computing, 6(4):409–427, 2012.

[2] L. Bigo. Symbolic representations and topological analysis of musical struc-
tures with spatial programming. In JCAAAS, Paris, 2010.

[3] L. Bigo, J.-L. Giavitto, and A. Spicher. Building topological spaces for
musical objects. In Mathematics and Computation in Music, volume 6726
of LNAI, Paris, France, Juin 2011.

[4] A. Cont. Antescofo: Anticipatory synchronization and control of inter-
active parameters in computer music. In International Computer Music
Conference (ICMC), 2008.

[5] P. Desain and H. Honing. LOCO: a composition microworld in Logo. Com-
puter Music Journal, 12(3):30–42, 1988.

[6] D. Fober, Y. Orlarey, and S. Letz. FAUST architectures design and OSC
support. In 14th Int. Conference on Digital Audio Effects (DAFx-11), pages
231–216. IRCAM, 2011.

[7] P. Hudak. A sound and complete axiomatization of polymorphic temporal
media. Technical Report RR-1259, Department of Computer Science, Yale
University, 2008.

3see http://inedit.ircam.fr/

31

[8] P. Hudak. The Haskell School of Music : From signals to Synphonies. Yale
University, Department of Computer Science, 2013.

[9] P. Hudak, J. Hugues, S. Peyton Jones, and P. Wadler. A history of Haskell:
Being lazy with class. In Third ACM SIGPLAN History of Programming
Languages (HOPL), San-Diego, 2007. ACM Press.

[10] D. Janin. Vers une modélisation combinatoire des structures rythmiques
simples de la musique. Revue Francophone d’Informatique Musicale
(RFIM), 2, 2012.

[11] D. Janin. Algebras, automata and logic for languages of labeled birooted
trees. In Int. Col. on Aut., Lang. and Programming (ICALP), volume 7966
of LNCS, pages 318–329. Springer, 2013.

[12] D. Janin. On languages of one-dimensional overlapping tiles. In Int. Conf.
on Current Thrends in Theo. and Prac. of Comp. Science (SOFSEM),
volume 7741 of LNCS, pages 244–256, 2013.

[13] D. Janin. Overlaping tile automata. In 8th International Computer Sci-
ence Symposium in Russia (CSR), volume 7913 of LNCS, pages 431–443.
Springer, 2013.

[14] D. Janin, F. Berthaut, and M. DeSainteCatherine. Multi-scale design of
interactive music systems : the libTuiles experiment. In Sound and Music
Computing (SMC), 2013.

[15] J. Kellendonk. The local structure of tilings and their integer group of
coinvariants. Comm. Math. Phys., 187:115–157, 1997.

[16] J. Kellendonk and M. V. Lawson. Tiling semigroups. Journal of Algebra,
224(1):140 – 150, 2000.

[17] M. V. Lawson. Inverse Semigroups : The theory of partial symmetries.
World Scientific, 1998.

[18] S. Letz, Y. Orlarey, and D. Fober. Real-time composition in Elody. In
Proceedings of the International Computer Music Conference, pages 336–
339. ICMA, 2000.

[19] S. Letz et al. The LibAudioStream library, 2012. http://libaudiostream.
sourceforge.net/.

[20] J. Sakarovitch. Elements of Automata Theory. Cambridge University Press,
2009.

32

