
Towards an open Web Audio plugin standard

Michel Buffa, Jérôme Lebrun
Université Côte d’Azur

CNRS, INRIA
(buffa, lebrun)@i3s.unice.fr

Jari Kleimola, Oliver Larkin
webaudiomodules.org

(jari, oli)@webaudiomodules.org

Stéphane Letz
GRAME

letz@grame.fr

ABSTRACT
Web Audio is a recent W3C API that brings the world of
computer music applications to the browser. Although developers
have been actively using it since the first beta implementations in
2012, the number of web apps built using Web Audio API cannot
yet compare to the number of commercial and open source audio
software tools available on native platforms. Many of the sites
using this new technology are of an experimental nature or are
very limited in their scope. While JavaScript and Web standards
are increasingly flexible and powerful, C and C++ are the
languages most often used for real-time audio applications and
domain specific languages such as FAUST facilitate rapid
development with high performance. Our work aims to create a
continuum between native and browser based audio app
development and to appeal to programmers from both worlds.
This paper presents our proposal including guidelines and proof of
concept implementations for an open Web Audio plug-in standard
- essentially the infrastructure to support high level audio plug-ins
for the browser.

CCS CONCEPTS
• Software and its engineering → Software organization and
properties → Software system structures → Abstraction,
modeling and modularity

KEYWORDS
WebAudio, Audio Effects and Instruments, Plugin Architecture,
Web Standards

1 INTRODUCTION
This paper will introduce work that was originally being done
separately by three groups of researchers who had different initial
interests. Due to the clear similarities in the work, the authors
decided to join forces to develop interoperable Web Audio plug-
ins and plug-in hosts, and to synchronize their efforts towards the
beginnings of an open standard. One group has been developing
the FAUST domain specific language (DSL) since 2002 [7].
FAUST is a DSL for digital signal processing with a focus on
audio applications. Hundreds of musical instruments and audio
effects are available written using the FAUST language, and the
toolchain can compile them to different targets, including Web
Audio.

WWW ’18 Companion April 23-27, 2018, Lyon, France.
© 2018 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC BY 4.0 License. ACM ISBN 978-1-4503-5640-
4/18/04. DOI: https://doi.org/10.1145/3184558.3188737

Another group has been developing the Web Audio Module
(WAM) API since 2014 [4]. WAMs are high level audio plug-ins
for the Web browser and have a C++ API, like native plug-in
formats. At the time of writing there are six WAM synths
available that have been ported from native code. The last group
of researchers have been developing their own Web Audio plug-
ins since 2012 in the context of a web-based “pedal board” for
guitarists. Each virtual pedal as well as the amp simulator is
effectively a plug-in, and the pedal board as a whole can be
considered a plug-in host. Authors from this group are also W3C
Advisory Committee representatives who participate to the W3C
Web Audio working group.
Despite differences in implementation in the existing work, all
three groups have had to deal with similar issues regarding the
specification of a high-level audio processing “plug-in” for the
browser, and so decided to work together. A publicly available
demo which showcases the work is actively being developed as a
proof of concept1. This paper addresses the different aspects of
what the definition of an open standard for Web Audio plug-ins
should be, including the APIs, hosting and approaches to
packaging and distribution.

2 BACKGROUND CONTEXT AND TERMS

2.1 The Web Audio API and the lack of an open
plug-in standard

The W3C Web Audio API2 is now a recommendation candidate.
It proposes a set of unit generators called AudioNodes for graph-
based realizations of audio algorithms and it is supported in the
latest versions of most popular desktop browsers, with some
support on mobile. The connection of these nodes in the browser
via the JavaScript API allows for a range of different applications
involving real time audio processing. Music apps are not the only
ones that require complex audio backends and the API is designed
to support the needs of games and other use cases. The API
comes with a limited set of standard nodes for common operations
such as volume control, audio filtering, time delay/echo,
reverberation, dynamics processing, spatialization, etc. The recent
addition of the AudioWorklet node provides a solution for
implementing custom low level audio processing. The
AudioWorklet is the last inclusion in the Web Audio API version
1 and replaces the deprecated ScriptProcessorNode (SPN), which
offered similar functionality but was unsuitable for real-time
audio since audio processing was performed in the main thread

1 The pedal board host that works with the plug-ins made by the three different
groups can be tried online at the following url: https://wasabi.i3s.unice.fr/pedalboard.
A video is available here: https://youtu.be/elbjh6tBK6U
2 https://www.w3.org/TR/webaudio/

WWW2018 Developers’ Track Michel Buffa et Al.

2

(not the high priority audio thread used by the rest of the API).
The Web Audio API’s nodes can be assembled into an “audio
graph”, which developers can use to write more complex audio
effects or instruments. Examples of audio effects that could be
built in this way might include: tape echo (DelayNode,
BiquadFilterNode, GainNode, feedback loop), auto-wah
(BiquadFilterNode, OscillatorNode), chorus (multiple
DelayNodes and OscillatorNodes for modulation), a distortion
(GainNode, WaveShaperNode) etc. Instruments can also be
written, either playing back recorded PCM samples (e.g. using
AudioBuffer and AudioBufferSourceNode) or direct synthesis of
electronic sound using a variety of techniques such as subtractive
synthesis (OscillatorNode, BiquadFilterNode, GainNode).
Sometimes, when performing live, you need to chain audio effects
together (for example in the guitarist’s pedal board) and when
composing/producing music multiple effects and instruments are
often used. These are use cases where the Web Audio API nodes
are too low level, hence the need for a higher-level unit in order to
represent the equivalent of a native audio “plug-in”. Such a high-
level “audio plug-in” standard does not exist yet for Web Audio,
but has been discussed for a future version of the API.
In the case of instrument plug-ins or when remote controls are
needed the Web MIDI API3 complements the Web Audio API by
offering access to local MIDI devices for control of pitch (via
MIDI note messages), and other parameters (via MIDI continuous
controller messages).

2.2 State of the art: native plugin standards
Over the last 20 years there has been a big shift in the technology
used in music production and performance. One of the most
significant changes is a that there are now far less hardware
devices, and many entirely software based studios where a mixing
console, effects units and tape machine all have virtual
equivalents. One of the landmark moments for this technology
was the introduction of VST (Virtual Studio Technology),
introduced by Steinberg in 1996. This is a cross-platform native
plug-in format, where plug-ins are dynamic libraries that load into
a host application which would typically be a Digital Audio
Workstation (DAW). A publicly available C++ SDK allowed
third parties to develop audio instruments and effects that plug-in
to other software. This has become one of the primary means of
musicians obtaining new sounds and there are many companies
that focus on the development of the software instruments and
effects, as well as a lively hobbyist community4. Several other
manufacturers of DAWs and operating systems developed their
own APIs in order to have a better influence on the user
experience of their platform (Apple’s AudioUnits, Avid’s AAX
etc.). In addition, the open source community created their own
formats5 . These APIs all share common functionality, namely
processing blocks of audio samples, handling parameter changes,
handling MIDI and handling state. For this reason, many third-

3 http://www.w3.org/TR/webmidi/
4 http://www.kvraudio.com/
5 http://lv2plug.in/gmpi.html

party developers opt to use an intermediate C++ framework such
as JUCE6 or iPlug7 , which allow a single code base to target
multiple APIs, saving the developer a lot of time.

2.3 What makes the Web platform different?
Although we aim to introduce the functionality offered by native
audio plug-ins to the Web, the differences of the environment
require a different approach to API design, and since this is an
entirely new platform it provides an opportunity to improve upon
some aspects of existing APIs. The web platform also brings with
it some new possibilities and unique challenges, when developing
real-time audio software:

Advantages: The Web facilitates ease of distribution (no
installation required), easy maintenance (resources at URLs can
be silently updated), new kinds of collaboration (using
technologies such as WebSockets and WebRTC for example),
platform/architecture independence, security (the browser has
sandboxing that can prevent misbehaving plugins from affecting
the host or file system). The ability to inspect JavaScript code at
runtime can also be useful.

Disadvantages: efficiency (JavaScript is usually slower than
native code, with issues that affect real-time audio performance
such as a garbage collector), latency (web audio applications do
not have access to low-level audio drivers in order to provide the
lowest latency possible, with significant differences in latencies
across platforms), sandboxing (access to native resources, local
hard disk access is forbidden or limited which can be problematic
depending on the use case).

Plug-ins can be thought as an “audio processor” (implementing
real time DSP code), and an optional user interface part.
Somewhere there needs to be functionality to register the
parameters and possibly deal with factory presets and external
control. An API is needed for these parts, but also an API or at
least guidelines on how to package it for publication on a plug-in
repository/server and for its integration in a host. A web based
API should be “Web aware” and use URLs as plug-ins identifiers.
Plug-ins are just another kind of Web resource, like images, css or
js files and should be referenced by a relative/local or remote
URL. Host web apps should be able to discover local/remote
plug-ins by querying plug-in folders/servers. Remote plug-ins
should be usable without the need to download them manually,
and the mixture of different JavaScript libraries and frameworks,
should not raise any naming conflict or dependency problems.

3 CURRENT STATE OF OUR THREE
PROJECTS

This section presents the work conducted separately by the
authors of this paper towards similar goals. We should also

6 http://www.juce.com/
7 https://github.com/olilarkin/wdl-ol

Towards an open Web Audio plugin standard WWW2018 Developers’ Track WOODSTOCK’97, July 2016, El Paso, Texas USA

 3

mention other researchers’ initiatives such as the Web Audio API
extension framework8 (WAAX) [9] that abstracts the Web Audio
API node graphs as units, which may be parameterized and
interconnected with other Web Audio API nodes, also the work
by Nicholas Jillings et Al. [3] who also proposed a host/plug-in
architecture for Web Audio, but that does not address some of our
requirements (full encapsulation, remote plugin support -using
URLs etc.).

3.1 Pedalboard plug-in host and pedals
For the WASABI project [6], the WIMMICS team from
INRIA/I3S/CNRS developed the first online digital emulation of a
tube guitar amplifier: the Marshall JCM 800, a popular amp used
by many classic rock artists (AC/DC, Led Zeppelin, Guns and
Roses etc.) [1, 2]

Figure 2: A real pedal board used by guitarists. Pedals are

chained together before going to the amplifier.

In addition to the sound modification from the amplifier, guitarists
often use effects processing. This usually comes in the form of
guitar “pedals” (Figure 2), that are plugged between the electric
guitar and the amplifier, or connected via the auxiliary “FX loop”
of the amplifier. Very often we call a set of pedals a “pedal
board”. A virtual pedal board web application was thus developed
as a host, along with the most common audio effect pedals as
audio plug-ins. The amp simulation was also turned into a plug-in
(Figure 3) for flexibility (e.g. having multiple amplifiers). The
main input of the pedal board is either the signal coming from the
guitar (via the computer’s analogue to digital converter) or from a
sound file, the main output goes to the computer’s audio output.
In the WASABI pedal board9, you can drag and drop pedals (or
the amp simulator), connect them, change the settings using knobs
or sliders, and control the parameters using a MIDI controller

8 WAAX is no more maintained.
9 See footnote 1 for URL of the demo, also URL of a demonstration video.

device if your browser supports Web Midi.
In our architecture, each plug-in is a Web Component (Web
Components is a suite of different technologies allowing you to
create reusable custom user interface components — with their
functionality encapsulated away from the rest of your code — and
utilize them in your web apps10). This file embeds the “audio
processor” JavaScript and may also define a GUI in its HTML
<template> section. The audio processor code inherits an
“EffectTemplate” JavaScript class that conforms to an “audio
processor” API we defined, that is similar to the interface 11
implemented by all standard Web Audio nodes.

Figure 3: Virtual pedal board. Effects pedals and two

instances of the guitar amp simulation form a graph of plug-
ins. The signal goes from left to right.

Some methods and properties have been added to this interface for
describing the plug-in, for loading/saving its state, and for dealing
with its lifecycle (in case it needs to fetch remote resources, for
example). The plug-ins we have developed can be assigned to a
MIDI device so that they can be modified remotely by any MIDI
controller. A “redistributable plug-in”, packaged like this, can be
published on a repository and easily reused: one just must import
the HTML file that defines it as a Web Component.
For importing and making the above plug-ins moveable with the
mouse in the pedal board host (Figure 3) we wrap them into
another Web Component that inherits the default behavior that
each “plug-in in the pedal board” shares (wires can be connected
from outputs to inputs, plug-ins can be moved using the mouse,
position and settings can be saved/restored etc.).
The “mother class” that defines this “host dependent behavior” is
named PBplug-in for “Pedal Board plug-in”. For each plug-in, we

10 https://developer.mozilla.org/en-US/docs/Web/Web_Components
11 https://dvcs.w3.org/hg/audio/raw-file/tip/webaudio/specification.html#AudioNode-
section

WWW2018 Developers’ Track Michel Buffa et Al.

4

write a subclass of PBplug-in in which we import the HTML file
that defines the “redistributable plug-in” (and this can be a remote
URL), and uses the HTML custom element that corresponds to
the imported plug-in to generate its GUI and add some JS code to
initialize it.
The code of PBplug-in and of its subclass is “host dependent” and
is not candidate for a standard. However, the way we defined
“redistributable plugins”: as Web Components (for distribution,
solving encapsulation problems and reusability), and separated the
“audio processor part” from the “GUI/controller” part, is close to
the other approaches presented in the next sections.

3.2 Faust
FAUST [7] is a functional, synchronous, domain specific
programming language specifically designed for real-time signal
processing and synthesis. A unique feature of Faust, compared to
other existing music languages like Max/MSP, PureData,
Supercollider, etc., is that programs are not interpreted, but fully
compiled. FAUST provides a high-level alternative to C/C++ to
implement efficient sample-level DSP algorithms.
Being a specification language, the FAUST code says nothing
about the audio drivers or the GUI toolkit to be used. It is the role
of the “architecture file” to describe how to relate the DSP code to
the external world. Additional generic code is added to connect
the DSP computation itself with audio inputs/outputs, and with
control parameters, which could be buttons, sliders, numerical
entries etc.; all this, in a standard user interface, or any kind of
control using a remote protocol like OSC or HTTP.
The FAUST compiler is organized in successive stages, from the
DSP block diagram to signals, and finally to the FIR (FAUST
Imperative Representation) which is then translated to several
target languages. The FIR language describes the computation
performed on the samples in a generic manner. It contains
primitives to read and write variables and arrays, do arithmetic
operations, and it defines the necessary control structures (for and
while loops, if statements for branching etc.). Several backends
have been developed to translate the FIR to C, C++, Java, asm.js,
WebAssembly (WASM) and LLVM IR.
Two FAUST backends have been developed to generate
WebAssembly formats [8]. The WAST backend generates human-
readable text based code, which is easier to test and debug. The
WASM backend generates the equivalent binary format to be
directly loaded and executed in browsers.
JavaScript code is used to load the WASM file into a typed array,
compile it to a module with WebAssembly.compile, then
instantiate it using WebAssembly.Instance function, and
finally get the callable exported functions.
Monophonic DSPs (generators, processor, analyzers...) are created
by wrapping a single DSP Faust object. Polyphonic MIDI
controllable instruments can be defined using wrapper code that
takes the Faust DSP code to be used as the description of a single
voice. Several voices are then automatically created, and a MIDI
API to handle incoming events, and to do voices allocation and
handling is added. The DSP memory is either allocated inside the
WASM module (for monophonic DSPs), or externally in the

wrapping JavaScript code (to allocate several voices in the
polyphonic instrument case), and is given as parameter when
creating the module.
The DSP code is finally wrapped to be usable as a regular
AudioNode. Two models have been successfully developed: a
specialized ScriptProcessorNode and more recently a specialized
AudioWorkletNode. In both cases their standard AudioNode API
is extended with some additional methods:
getNumInputs/getNumOutputs: returns the number of
audio inputs/outputs.
getParamValue(path,value)/setParamValue(path
,value) to read and write control parameters, and getParams
retails an array containing all their paths (as OSC like
hierarchical paths).
getJSON returns a full JSON description of the DSP control
hierarchy, to be used by a GUI manager to create a GUI with
buttons, sliders etc.
Additional MIDI control entry points (keyOn/keyOff,
ctrlChange, pitchWheel…) are also added for polyphonic
instruments.
Starting from a given FAUST DSP source file, a set of scripts
(faust2wasm, faust2webaudiowasm…) allow to chain successive
operations: calling the FAUST compiler to produce the compiled
WASM file, to generate the glue JavaScript code starting from the
generic architecture file, and even possibly to create a fully-
functional self-contained HTML page with a complete GUI to
control the DSP processor or instrument.

3.3 WebAudioModules (WAMs)
The Web Audio Module (WAM) API discussed in [4] covered the
core functionality of native audio plug-in instruments and effects,
and demonstrated two proof-of-concept synthesizer
implementations in asmjs, running in ScriptProcessorNode. The
authors have since extended the API to target WebAssembly and
AudioWorklets.

Figure 4: WAM instruments currently available online

Towards an open Web Audio plugin standard WWW2018 Developers’ Track WOODSTOCK’97, July 2016, El Paso, Texas USA

 5

Although WAMs may be implemented entirely in JavaScript, the
authors’ primary focus is in cross-compiling C++ DSP code into
WASM binary format. Given the large amount of existing C++
implementations in native domains, classes have been developed
for the iPlug and JUCE frameworks to accelerate porting efforts.
Our new work has ported four additional synthesizers which
sound and look like their desktop counterparts. The current WAM
instrument library is available online12. Our community site also
contains a draft specification. Source code tracking the latest API
draft is available at GitHub13.
The WAM API is split into two parts. The WAM processor
implements the DSP part and runs in the high priority audio
thread, most often as a WASM module. The WAM processor
extends the standard AudioWorkletProcessor class, and provides
the glue between JavaScript and WASM. The WAM controller is
responsible for loading and creating the processor part, handling
presets, and exposing the plug-in control interface. The control
interface offers scripting, GUI, and MIDI access to the plug-in.
The WAM controller is derived from AudioWorkletNode (which
runs on the main thread), and is written in JavaScript. The
controller and processor communicate via a MessagePort channel
with asynchronous events. This bi-directional channel is used for
parameter, patch, and MIDI data. Currently the stream flows in
one direction only, from the controller to the processor.
To enable interoperability with other Web Audio projects, WAMs
need to resolve audio IO and control (scripting, GUI and MIDI)
compatibility issues. Since WAMs are essentially extended
AudioWorklets, they operate like standard Web Audio API nodes.
They integrate directly into the Web Audio API AudioGraph, and
thus audio IO and basic scripting support is already compatible
with projects conforming to the Web Audio API standard. The
WAM controller class also complies with the Web Midi API
standard.
The specific goal of the WAM framework in this paper is to agree
on a common hosting interface, i.e., to devise a standard API for
A) extended scripting capabilities for synthesis parameter and
patch manipulation, B) Midi stream connectivity, and C) GUI
related issues. In addition, we aim to devise a distribution strategy
that streamlines loading and instantiating a WAM in a host
environment, and a way to expose WAM collections, distributed
via the internet, with proper metadata.

4 CONVERGED API

4.1 How can our projects co-operate?
WAMs describe the audio processor as a single Web Audio node
and propose a controller/host to load it and configure its GUI,
ports, etc. In the FAUST generated files, when targeting Web
Audio, the audio processor is also considered as a single
AudioWorklet node, and the JS generated code acts as the
controller / host part like the approach used in WAMs. Both

12 https://webaudiomodules.org/wamsynths/
13 https://github.com/webaudiomodules

FAUST and WAMs have a rather complete API for the audio
processor and/or controller part that is similar to that of the Web
Audio interface (shared by all Web Audio nodes), with important
additions described in previous sections (metadata, MIDI, audio
buffer size can be set, etc.)

Figure 5: Two WAM synths and a FAUST plug-in have been

integrated in the pedal board

Figure 6: Code for importing the DX7 WAM into the pedal
board. The DX7 is imported at line 2. Its GUI is wrapped in

the template at line 6.

The pedal board from the WASABI project is mainly a host - an
interactive web app for manipulating Web Audio plug-ins,
arranging them on the screen, connecting them etc. The plugins
developed so far are rather simple, with the noticeable exception
of the tube guitar amp simulator, but all are made of multiple Web
Audio nodes. It’s pure “JS audio coded from scratch, not
compiled or generated”, contrarily to FAUST or WAMs. The
“audio processor part” API of each pedal board plug-in is a subset
of FAUST and WAM API methods and properties, with

WWW2018 Developers’ Track Michel Buffa et Al.

6

sometimes slightly different names. The definition of plug-ins as
Web Components is appealing as components could easily be
made available on a remote server and would not conflict with the
host code (HTML id attributes, JS names, CSS rules, etc.) As a
proof of concept, two WAMs have been repackaged as Web
Components and imported in the pedal board: the Yamaha DX7
FM/PM and the OBXD virtual analog synthesizers 14 . This is
shown in Figure 5. The code for packaging the remote DX7 synth
is shown in Figure 6.
We also managed to import a simple headless FAUST plug-in (the
Zita_rev1 reverb15) by wrapping it as a Web Component HTML
file (reusing the JavaScript code that loads the WASM code and
implements its audio processor API). For this last example, we
built a simple GUI in the HTML template section of the Web
Component.
What did we learn here? First, we need to have an “audio
processor” API that can handle both a single node audio processor
(e.g. AWN in WAM and FAUST implementations) - as well as
multiple nodes (i.e. pedal board plug-in implementation), and
expose methods and properties as closely as possible to the those
of the standard AudioNode interface. In addition, we should have
methods and properties for describing a plug-in (name, version,
author etc.), for managing its life cycle, for saving/restoring its
state, managing presets/banks and for MIDI. And we must align
the parts of our respective APIs that match in terms of
functionality/feature.
Finally, we can say that packaging Web Audio plug-ins as Web
Components in an HTML file, making them available through a
remote URL, is a desirable way of distributing and importing
them.
The following sections will detail the proposed API and best
practices.

4.2 Headless Plugins
P1: class Plugin extends AudioNode {...}
A headless plug-in should inherit from AudioNode (or implement
this interface), and extend its properties and methods as follows
later in this section. To this end, a Singlenode plug-in extends
AudioWorkletNode. A Multinode plug-in also exposes the
AudioNode interface, but instead of matching
AudioWorkletProcessor, it contains an internal audio processing
graph composed of other AudioNodes.

P2: readonly property JSON metadata
Plug-ins expose JSON-format metadata containing name, version,
category, type (audio / MIDI / both), description, thumbnail image
URLs and author information.

P3: readonly property JSON descriptor
Plug-in exposes its parameter space via a descriptor array. Each
item in the array holds key, type, range, default, unit, label and

14 http://www.webaudiomodules.org/wamsynths/
15 https://faust.grame.fr/libraries.html#dm.zita_rev1

normalized flag fields. Type is a hint for generic GUI control
type, following FAUST practice.

P4: get/setParam(key, value)
Since plug-ins may have many synthesis / processing parameters,
it might not be feasible to implement the entire parameter space as
AudioParams. key is an integer or a string and value is a number
or object (for parameter group support). Transfer format between
controller and processor is { type:”param”, key:key,
value:value }

P5: get/setPatch(data, index)
data is an opaque block, index is an integer that is optional for set.
transfer format is { type:”patch”, data:data,
index:index }. Bank is set using P4.

P6: void onMidi(msg)
msg is an array-like object identical to the Web Midi API’s
onmidimessage event.data. The transfer format is {
type:”midi”, data:msg }. Sysex is set using
setParam(”sysex”, data), as discussed in P4.

P7: get/setState(data)
fetches or restores plugin state. data is opaque, and transfer format
is { type:”state”, data:data }

P8: readonly property String[] patchNames
Since patch data is treated as an opaque block, plugin needs to
parse bank patch names internally.

P9: inputChannelCount extension
Audio IO configuration follows AudioWorkletNodeOptions
specification, extended with inputChannelCount array.

P10: Plugins should preferably conform to two-
part namespacing
...in form of vendor.model. This can be used in
AudioWorkletProcessor/Node class names, as well as in element
names (e.g., <vendor-name>).

4.3 Plug-ins with a graphical user interface
The Web provides many ways of implementing user interfaces
with HTML/CSS/JS code. Plug-ins that come with a graphical
user interface (GUI) should avoid any possible namespace
conflicts (HTML id attributes, CSS rules, JavaScript variables),
and should come on encapsulated form, easy to import in a host.
One standard solution consists in wrapping them as Web
Components. A Web Component follows the W3C standard APIs:
HTML templates (inert HTML code meant to be instantiated),
shadow DOM (encapsulation), HTML custom element (associate
a plug-in with a declarative HTML tag, ex <wam-
obxd></wam-obxd>), and HTML imports (use <link
rel=”import” href=”wam-obxd.html”> and you’ll
import all the HTML/CSS/JS code of the plug-in, avoiding
conflicts as everything is encapsulated). Then it becomes possible
in any host, to wrap this plug-in into any existing shell that will

Towards an open Web Audio plugin standard WWW2018 Developers’ Track WOODSTOCK’97, July 2016, El Paso, Texas USA

 7

make it manageable by the host. In the pedal board host, this shell
is also a Web Component that defines a standard HTML template
for any plug-in so that it can be positioned using the mouse and
connected to other plug-ins. It can be generated after interrogating
the imported “standard plug-in”: size of its GUI, number of i/o,
name, thumbnail icon, etc.

4.4 Host API
The host is responsible for accessing plug-in metadata and
standard methods and properties defined above. These include
loading and instantiating a plug-in, connecting it to a Web Audio
API audio graph, providing MIDI and other control streams,
presenting the GUI, providing patch data, and saving and
restoring plug-in state. It may also aggregate cloud plug-in folders
as discussed in the next section.
Host-plug-in communication, if required, may be handled using
key-value pairs as described in P4 above. The property set is still
under discussion. A host may also be packaged as a plug-in
conforming to a subset of the APIs described in Sections 4.2 and
4.3. A simple single plug-in wrapper, such as <wam-host
src=”url”> offers only plug-in loading API. The URL is
exposed declaratively as a custom element src attribute, and
imperatively as src property and its accompanying load() method.
More advanced hosts, such as the pedal board, may offer more
elaborate “host dependent” behavior to the plug-in standard we
propose, by wrapping plug-ins into a richer container (as
explained in section 3.1)

4.5 Guidelines: distributing and reusing plugins
The Web Components W3C standard16 defines a way to easily
distribute components with encapsulated HTML/CSS/JS/WASM
code without namespace conflicts. Where native plug-ins needed
to be downloaded and installed, URLs make no difference
between a local or a distant plug-in, a Web Component plugin
could be used remotely just by its (possibly RESTful) URL
reference. This makes writing a plug-in remote server easy.
URLs also enable an intuitive distribution strategy for both
headless and GUI-equipped versions of a plug-in. A headless
version is distributed as a (minified) JavaScript package (plug-
in.js), whereas its complete GUI version is encapsulated into an
HTML import (plug-in.html).
Repositories and aggregator sites can collect plug-in URLs and
expose their collections as “cloud plug-in folders”. This folder is
also exposed as a URL, pointing to a JSON structure. JSON
includes plug-in metadata such as headless/GUI plug-in and
thumbnail URLs, name, version, category, type: audio/MIDI/both,
description, author info, and freeform tags. A plug-in host may
then point to several aggregator site URLs in a similar manner
that DAWs handle native plug-in folders.
Repositories may naturally host the plug-ins themselves. Since the
plug-in is a Web Component, a repository Web page can embed it

16 https://www.webcomponents.org

as easily as it would embed a video. Prospective users may then
explore the plug-in before adding its URL into their own link
collection, or DAW. Native plug-in vendors may also demonstrate
their offerings online, without requiring manual installation.

5 CONVERGED API IMPLEMENTATIONS
The converged API allows different approaches to be used to
implement a high-level audio plug-in for the browser and we have
tested this with several proofs of concept.
For example, we’ve got an online host17 (the pedal board) that is
actively being developed to take advantage of the converged API
we designed, and that is the main testbed for plug-ins being
developed. We are already importing plug-ins located on other
domains/
servers (via URLs). WAMs, FAUST and pedal board toolchains
and SDKs are being updated to conform to the proposed API /
packaging. The packaging process (make the plug-in a Web
Component for easy redistribution) can be automated, as well as
importing a plug-in into the host without any manual operation.
The tools/generators for generating Web Component wrappers are
still under development.

6 CONCLUSION / DISCUSSION
The pedal board team’s short term plans are to increase the
number of pedals available, publish them on a remote repository
and hopefully convince other developers to contribute and/or
adapt their host/plugins to this proposed API. The pedal board still
needs development: pure MIDI plug-ins need to be tested, and
MIDI I/O and routing should also be implemented (i.e. connect a
MIDI event generator plug-in to a synth within the pedal board
GUI). The WAM team is working on a DAW that can host plug-
ins that follow this API as well as updating the iPlug C++ plug-in
framework to support the WAM API out of the box. The FAUST
team is investigating how its own pure FAUST based host (using
the embedded dynamical compilation model18) could be extended
to support the defined host API.
The API is still a draft version and needs contribution/critics from
audio developers. We should also conduct a comparison with
existing native plug-in standards: i.e. identify lacking features
(like timestamped control events, a proper DAW style “transport”
API with multiple time bases [tempo and musical time, global
sample counting clock, etc.]), but also learn from their
shortcomings.
This paper is the first initiative that involves synchronizing the
efforts of three groups of developers who have been working on
various approaches for implementing high level audio “plug-ins”
in the browser. We made our plugins inter-operable by
conforming to a converged API and architecture, and propose a

17 See footnote 1 for URL of the demo, also URL of a demonstration video.
18 https://faust.grame.fr/faustplayground/

WWW2018 Developers’ Track Michel Buffa et Al.

8

solution to distribute them using URLs and by packaging them as
Web Components. Our proposal and proof-of-concept demos will
be submitted to the W3C Web Audio working group for
evaluation. We hope that this work may become a starting point
for a new addition to the Web Audio v2 specification, to provide
needed functionality and infrastructure for musical applications of
Web Audio.

ACKNOWLEDGMENTS
This work was supported by the French Research National
Agency (ANR) and the WASABI team (contract ANR-16-CE23-
0017-01). ElMahdi Korfed and Guillaume Etevenard helped
developing these tools.

REFERENCES
[1] M. Buffa and J. Lebrun. 2017. Real time tube guitar amplifier simulation using

WebAudio. In Proc. 3rd Web Audio Conference (WAC 2017). London, UK.
[2] M. Buffa and J. Lebrun. 2017. Web Audio Guitar Tube Amplifier vs Native

Simulations. In Proc. 3rd Web Audio Conference (WAC 2017). London, UK.
[3] N. Jillings and al. 2017. Intelligent audio plugin framework for the Web Audio

API. In Proc. 3rd Web Audio Conference (WAC 2017). London, UK.
[4] J. Kleimola and O. Larkin. 2015. Web audio modules. In Proc. 12th Sound and

Music Computing Conference (SMC15). Maynooth, Ireland.
[5] M. Buffa, M. Demetrio, and N. Azria. 2016. Guitar pedal board using

WebAudio. In Proc. 2th Web Audio Conference (WAC 2016). Atlanta, USA.

[6] M. Buffa and al. 2017. WASABI: a Two Million Song Database Project with
Audio and Cultural Metadata plus WebAudio enhanced Client Applications. In
Proc. 3rd Web Audio Conference (WAC 2017). London, UK.

[7] Orlarey, Y., Fober, D. & Letz, S. (2004). Syntactical and Semantical aspects of
Faust. Soft Computing, 8(9):623–632, 2004.

[8] S. Letz, Y. Orlarey, and D. Fober. 2017. Compiling Faust Audio DSP Code to
WebAssembly. In Proc. 3rd Web Audio Conference (WAC 2017). London, UK.

[9] Choi, H. & Berger, J. (2013). WAAX: Web Audio API eXtension. In Proc. Int.
Conf. New Interfaces for Musical Expression (NIME’13), Daejeon, Korea.

