
10ème Congrès Français d’Acoustique
Lyon, 12-16 Avril 2010

Automatic Paralllelization of Audio Applications with Faust

Yann Orlarey, Stépahen Letz, Dominique Fober
Grame, centre national de création musicale, BP 1185, 69202 Lyon Cedex 01

1 Introduction

Faust (Functional AUdio STreams) [1] stands for both
a programming language and its compiler. Being fully
compiled allows Faust to be used as an alternative to
C/C++ to develop high-performance audio signal pro-
cessing applications, DSP libraries and plug-ins for a
variety of audio platforms and standards.

Several principles have guided the design of Faust :

- Faust is a specification language. It aims at pro-
viding an adequate notation to describe signal pro-
cessors from a mathematical point of view. It is,
as much as possible, free from implementation de-
tails.

- Audio programming languages are generally in-
terpreted. Faust is the first to be fully com-
piled. The compiler translates Faust programs
into equivalent C++ programs taking care of gen-
erating the most efficient code.

- The generated code works at the sample level. It is
therefore suited to implement low-level DSP func-
tions like recursive filters. Moreover the code can
be easily embedded.

- The semantic of Faust is simple and well defined.
This is not just of academic interest. It allows the
Faust compiler to be semantically driven. Instead
of compiling a program literally, it compiles the
mathematical function it denotes.

- Faust is a textual language but nevertheless
block-diagram oriented. It actually combines two
approaches: functional programming and algebraic
block-diagrams. The key idea is to view block-
diagram construction as function composition.

- Thanks to the notion of architecture, Faust pro-
grams can be easily deployed on a large variety of
audio platforms and plugin formats without any
change to the Faust code.

In the following section we will briefly describe the
Faust compiler and how it generates C++ code. In
particular we will introduce the new compilation tech-
niques used to generate parallel C++ code.

2 The Faust compiler

Being efficiently compiled is essential for Faust to be
used as an alternative to C/C++ to write high per-
formance audio applications and plugins. Several steps
are involved to compile a Faust program into C++. Be-
fore describing the C++ code generation itself, let’s first
see a crucial step that translates a Faust program into
mathematical equations.

2.1 The math behind a Faust program

The Faust compiler is semantically driven. It doesn’t
compile a Faust program directly, but its mathematical
meaning. This approach allows two very different Faust
programs, but with the same mathematical meaning, to
result in the exact same C++ implementation. In other
words, the way a Faust program is written doesn’t mat-
ter (in theory), only counts its mathematical meaning.
It is the role of the Faust compiler, not of the user, to
provide the best implementation of this mathematical
meaning.

In order to discover the mathematical meaning of a
program, the Faust compiler uses a phase of symbolic
propagation. The principle is to propagate symbolic sig-
nals through the components of the block-diagram in
order to get, at the other end, the mathematical equa-
tion of the produced signals. These equations are then
normalized so that different block-diagrams, but com-
puting mathematically equivalent signals, result in the
exact same output equations.

Here is a very simple example of normalization,
where two different Faust programs will result in the
same equation. In the first program :

process = /(2) : @(10);

the input signal is divided by 2 (/(2)) and then delayed
by 10 samples (@(10)). The : operator indicates a se-
quential composition, the outputs of the left expression
are connected to the inputs of the right expression.

In the second program:

process = *(2) : @(7) : /(4): @(3);

the input signal first multiplied by 2, then delayed by
7 samples, then divided by 4 and then delayed by 3
samples.

Both programs are different but lead to the same
signal equation:

Y (t) = 0.5 ∗X(t− 10)

and therefore will result in the same C++ program.
Faust applies several rules in order to simplify and

normalize output signal equations. For example one of
theses rules says that it is better to multiply a signal by a
constant after a delay than before. It gives the compiler
more opportunities to share and reuse the same delay
line. Another rule says that two consecutive delays can
be combined into a single one. etc.

Once the compiler has the mathematical equations
of a program, it goes through a phase of type inference
that will help not only to detect errors but also to gen-
erate the most efficient C++ code. Then the equations
are passed to the code generation stage. Three code
generation modes are available : scalar, vector and par-
allel.

2.2 Scalar Code generation

The generation of the C++ code is made by populating
a klass object (representing a C++ class), with strings
representing C++ declarations and lines of code. In
scalar mode (the default code generation mode) these
lines of code are organized in a single sample compu-
tation loop, while they can be splitted in several loops
with the vector and parallel schemes.

To illustrate scalar code generation, let’s take two
simple examples. The first one converts a stereo signal
into a mono signal by adding the two input signals:
process = +;

In this case the generated C++ code is the following:
virtual void compute (int count ,

float** input ,

float** output)

{

float* input0 = input [0];

float* input1 = input [1];

float* output0 = output [0];

for (int i=0; i<count; i++) {

output0[i] = (input0[i] + input1[i]);

}

}

In the next example, the sum of the two input signals
is duplicated on two output signals :
process = + <: _,_;

In this case the expression (input0[i] + input1[i])

will not be duplicated but cached in a temporary vari-
able:
virtual void compute (int count ,

float** input ,

float** output)

{

float* input0 = input [0];

float* input1 = input [1];

float* output0 = output [0];

float* output1 = output [1];

for (int i=0; i<count; i++) {

float fTemp0 = (input0[i] + input1[i]);

output0[i] = fTemp0;

output1[i] = fTemp0;

}

}

2.3 Vector Code generation

Modern C++ compilers are able to do autovectoriza-
tion, that is to use SIMD instructions to speedup the

code. These instructions can typically operate in paral-
lel on short vectors of 4 simple precision floating point
numbers thus leading to a theoretical speedup of ×4.
Autovectorization of C/C++ programs is a difficult
task. Current compilers are very sensitive to the way
the code is arranged. In particular too complex loops
can prevent autovectorization. The goal of the vector
code generation is to rearrange the C++ code in a way
that facilitates the autovectorization job of the C++
compiler. Instead of generating a single sample compu-
tation loop, it splits the computation into several sim-
pler loops that communicates by vectors.

The vector code generation is activated by passing
the --vectorize (or -vec) option to the Faust compiler.
Two additional options are available: --vec-size <n> con-
trols the size of the vector (by default 32 samples) and
--loop-variant 0/1 gives some additional control on the
loops.

To illustrate the difference between scalar code and
vector code, let’s take the computation of the RMS
(Root Mean Square) value of a signal. Here is the Faust
code that computes the Root Mean Square of a sliding
window of 1000 samples:

// Root Mean Square of n consecutive samples

RMS(n) = ^(2) : mean(n) : sqrt ;

// Mean of n consecutive samples of a signal

// (uses fixpoint to avoid the accumulation of

// rounding errors)

mean(n) = float2fix : integrate(n) :

fix2float : /(n);

// Sliding sum of n consecutive samples

integrate(n,x) = x - x@n : +~_ ;

// Convertion between float and fix point

float2fix(x) = int(x*(1 < <20));

fix2float(x) = float(x)/(1 < <20);

// Root Mean Square of 1000 consecutive samples

process = RMS (1000) ;

Listing 1: RMS implementation in Faust

The compute() method generated in scalar mode is
the following:

virtual void compute (int count ,

float** input ,

float** output)

{

float* input0 = input [0];

float* output0 = output [0];

for (int i=0; i<count; i++) {

float fTemp0 = input0[i];

int iTemp1 = int (1048576* fTemp0*fTemp0);

iVec0[IOTA &1023] = iTemp1;

iRec0 [0] = ((iVec0[IOTA &1023] + iRec0 [1])

- iVec0 [(IOTA -1000)&1023]);

output0[i] = sqrtf (9.536744e-10f *

float(iRec0 [0]));

// post processing

iRec0 [1] = iRec0 [0];

IOTA = IOTA +1;

}

}

Listing 2: RMS example, scalar C++ code

The -vec option leads to the following reorganization
of the code:

virtual void compute (int fullcount ,

float** input ,

float** output)

{

int iRec0_tmp [32+4];

int* iRec0 = &iRec0_tmp [4];

for (int index =0; index <fullcount; index +=32)

{

int count = min (32, fullcount -index);

float* input0 = &input [0][index];

float* output0 = &output [0][index];

for (int i=0; i<4; i++)

iRec0_tmp[i]= iRec0_perm[i];

// SECTION : 1

for (int i=0; i<count; i++) {

iYec0[(iYec0_idx+i)&2047] =

int (1048576* input0[i]* input0[i]);

}

// SECTION : 2

for (int i=0; i<count; i++) {

iRec0[i] = ((iYec0[i] + iRec0[i-1]) -

iYec0[(iYec0_idx+i -1000)&2047]);

}

// SECTION : 3

for (int i=0; i<count; i++) {

output0[i] = sqrtf ((9.536744e-10f *

float(iRec0[i])));

}

// SECTION : 4

iYec0_idx = (iYec0_idx+count)&2047;

for (int i=0; i<4; i++)

iRec0_perm[i]= iRec0_tmp[count+i];

}

}

Listing 3: RMS example, vectorized C++ code

While the second version of the code is more com-
plex, it turns out to be much easier to vectorize ef-
ficiently by the C++ compiler. Using Intel icc 11.0,
with the exact same compilation options: -O3 -xHost
-ftz -fno-alias -fp-model fast=2, the scalar ver-
sion leads to a throughput performance of 129.144
MB/s, while the vector version achieves 359.548 MB/s,
a speedup of x2.8 !

Technically the vector code generation is built on top
of the scalar code generation. Every time an expression
needs to be compiled, the compiler checks to see if it
needs to be in a separate loop or not. It applies some
simple rules for that : expressions that are shared (and
are complex enough) are good candidates to be compiled
in a separate loop, as well as recursive expressions and
expressions used in delay lines.

The result is a directed graph in which each node is
a computation loop (see Figure 1). This graph is stored
in the klass object and a topological sort is applied to it
before printing the code in sequential order (see listing
3).

2.4 Parallel Code generation

The parallel code generator is build on top of the vector
code generator. In particular it uses the same DAG of
computation loops, because it expresses all the potential
parallelism. It is easy to see form figure 1 that L5 and
L6 can be computed in parallel, or L4 and L7, but not
L1 and L6.

There are two approaches to execute this graph in
parallel : static scheduling and dynamic scheduling.
With static scheduling, parallele executions are decided
at compile time, while with dynamic scheduling, they
are decided at run time.

L1

L4

L7

L8

L6

L2

L9

L3

L5

Figure 1: The result of the -vec option is a directed
acyclic graph (DAG) of small computation loops

The Faust compiler provides both options. Static
scheduling based on OpenMP is activated with the
--openMP option, while dynamic scheduling is activated
with the --scheduler.

2.4.1 The OpenMP code generator

The --openMP (or -omp) option given to the Faust com-
piler will insert appropriate OpenMP directives in the
C++ code. OpenMP (http://wwww.openmp.org) is a
well established API that is used to explicitly define
direct multi-threaded, shared memory parallelism. It
is based on a fork-join model of parallelism. Parallel
regions are delimited by using the #pragma omp parallel

construct. At the entrance of a parallel region a team of
parallel threads is activated. The code within a parallel
region is executed by each thread of the parallel team
until the end of the region.
#pragma omp parallel

{

// the code here is executed simultaneously by

// every thread of the parallel team

...

}

In order not to have every thread doing redundantly
the exact same work, OpemMP provides specific work-
sharing directives. For example #pragma omp sections al-
lows to break the work into separate, discrete sections.
Each section being executed by one thread:
#pragma omp parallel

{

#pragma omp sections

{

#pragma omp section

{

// job 1

}

#pragma omp section

{

// job 2

}

...

}

...

}

2.4.2 Adding OpenMP directives

As said before the parallel code generation is built on
top of the vector code generation. The graph of loops
produced by the vector code generator is topologically
sorted in order to detect the loops that can be computed
in parallel. The first set S0 (loops L1, L2 and L3 in the
DAG of Figure 1) contains the loops that don’t depend
on any other loops, the set S1 contains the loops that
only depend on loops of S0, (that is loops L4 and L5),
etc..

As all the loops of a given set Sn can be computed in
parallel, the compiler will generate a sections construct
with a section for each loop.

#pragma omp sections

{

#pragma omp section

for (...) {

// Loop 1

}

#pragma omp section

for (...) {

// Loop 2

}

...

}

If a given set contains only one loop, then the com-
piler checks to see if the loop can be parallelized (no
recursive dependencies) or not. If it can be parallelized,
it generates:

#pragma omp for

for (...) {

// Loop code

}

otherwise it generates a single construct so that only
one thread will execute the loop:

#pragma omp single

for (...) {

// Loop code

}

2.4.3 Example of parallel OpenMP code

To illustrate how Faust uses the OpenMP directives,
here is a very simple example, two 1-pole filters in paral-
lel connected to an adder (see figure 2 the corresponding
block-diagram):

filter(c) = *(1-c) : + ~ *(c);

process = filter (0.9) , filter (0.9) : +;

Listing 4: two filters in parallel connected to an adder

The corresponding compute() method obtained using
the -omp option is the following:

virtual void compute (int fullcount ,

float** input ,

float** output)

{

float fRec0_tmp [32+4];

float fRec1_tmp [32+4];

float* fRec0 = &fRec0_tmp [4];

float* fRec1 = &fRec1_tmp [4];

#pragma omp parallel firstprivate(fRec0 ,fRec1)

{

Figure 2: two filters in parallel connected to an adder

for (int index = 0; index < fullcount;

index += 32)

{

int count = min (32, fullcount -index);

float* input0 = &input [0][index];

float* input1 = &input [1][index];

float* output0 = &output [0][index];

#pragma omp single

{

for (int i=0; i<4; i++)

fRec0_tmp[i]= fRec0_perm[i];

for (int i=0; i<4; i++)

fRec1_tmp[i]= fRec1_perm[i];

}

// SECTION : 1

#pragma omp sections

{

#pragma omp section

for (int i=0; i<count; i++) {

fRec0[i] = ((0.1f * input1[i])

+ (0.9f * fRec0[i -1]));

}

#pragma omp section

for (int i=0; i<count; i++) {

fRec1[i] = ((0.1f * input0[i])

+ (0.9f * fRec1[i -1]));

}

}

// SECTION : 2

#pragma omp for

for (int i=0; i<count; i++) {

output0[i] = (fRec1[i] + fRec0[i]);

}

// SECTION : 3

#pragma omp single

{

for (int i=0; i<4; i++)

fRec0_perm[i]= fRec0_tmp[count+i];

for (int i=0; i<4; i++)

fRec1_perm[i]= fRec1_tmp[count+i];

}

}

}

}

This code appeals for some comments:

1. The parallel construct #pragma omp parallel is the
fundamental construct that starts parallel execu-
tion. The number of parallel threads is generally
the number of CPU cores but it can be controlled
in several ways.

2. Variables external to the parallel region are shared

by default. The pragma firstprivate(fRec0,fRec1)

indicates that each thread should have its pri-
vate copy of fRec0 and fRec1. The reason is that
accessing shared variables requires an indirection
and is quite inefficient compared to private copies.

3. The top level loop for (int index = 0;...)... is ex-
ecuted by all threads simultaneously. The subse-
quent work-sharing directives inside the loop will
indicate how the work must be shared between the
threads.

4. Please note that an implied barrier exists at the
end of each work-sharing region. All threads must
have executed the barrier before any of them can
continue.

5. The work-sharing directive #pragma omp single in-
dicates that this first section will be executed by
only one thread (any of them).

6. The work-sharing directive #pragma omp sections

indicates that each corresponding
#pragma omp section, here our two filters, will
be executed in parallel.

7. The loop construct #pragma omp for specifies that
the iterations of the associated loop will be exe-
cuted in parallel. The iterations of the loop are
distributed across the parallel threads. For ex-
ample, if we have two threads, the first one can
compute indices between 0 and count/2 and the
other between count/2 and count.

8. Finally #pragma omp single in section 3 indicates
that this last section will be executed by only one
thread (any of them).

2.4.4 The scheduler code generator

With the --scheduler option, the Faust compiler uses
a very different approach. It generates parallel C++
code embedding a work stealing scheduler [2] based on
pthreads. The idea of work stealing is to try to keep the
memory cache hot while trying to minimize the interac-
tions between threads.

The C++ code generated contains a static descrip-
tion of the computation DAG (see listing 5). At the be-
gin of the execution, a pool of worker threads is created.
Each thread has it’s own local WSQ (Work Stealing
Queue), a special LIFO queue were each thread places
the runnable tasks he will have to run. Whenever a
task is finished, the thread push in the WSQ all the
tasks that become runnable (if any) and then pop the
next task to run, etc. If the WSQ of a thread become
empty, the thread is allowed to ”steal” a task from an-
other WSQ. But in this case, instead of a LIFO-pop, it
does a FIFO-pop in order to select the oldest task of the
WSQ.

The local LIFO Pop operation allows better cache lo-
cality and the FIFO steal Pop ”larger chuck” of work to
be done. The reason for this is that many work stealing
workloads are divide-and-conquer in nature, stealing one
of the oldest task implicitly also steals a (potentially)
large subtree of computations that will unfold once that
piece of work is stolen and run.

2.4.5 Example of parallel scheduler code

Listing 5 illustrates the scheduler code generated for the
parallel filters example of figure 2:

virtual void compute (int fullcount ,

float** input ,

float** output)

{

GetRealTime ();

this ->input = input;

this ->output = output;

StartMeasure ();

for (fIndex =0; fIndex <fullcount; fIndex +=32){

fFullCount = min (32, fullcount -fIndex);

TaskQueue ::Init ();

// Initialize end task

fGraph.InitTask (1 ,1);

// Only initialize tasks with inputs

fGraph.InitTask (4 ,2);

fIsFinished = false;

fThreadPool.SignalAll(fDynamicNumThreads -1);

computeThread (0);

while (! fThreadPool.IsFinished ()) {}

}

StopMeasure(fStaticNumThreads ,

fDynamicNumThreads);

}

void computeThread (int cur_thread) {

float* fRec0 = &fRec0_tmp [4];

float* fRec1 = &fRec1_tmp [4];

// Init graph state

{

TaskQueue taskqueue;

int tasknum = -1;

int count = fFullCount;

// Init input and output

FAUSTFLOAT* input0 = &input [0][fIndex];

FAUSTFLOAT* input1 = &input [1][fIndex];

FAUSTFLOAT* output0 = &output [0][fIndex];

int task_list_size = 2;

int task_list [2] = {2,3};

taskqueue.InitTaskList(task_list_size ,

task_list , fDynamicNumThreads ,

cur_thread , tasknum);

while (! fIsFinished) {

switch (tasknum) {

case WORK_STEALING_INDEX: {

tasknum = TaskQueue :: GetNextTask(

cur_thread);

break;

}

case LAST_TASK_INDEX: {

fIsFinished = true;

break;

}

case 2: {

for (int i=0; i<4; i++)

fRec0_tmp[i]= fRec0_perm[i];

for (int i=0; i<count; i++) {

fRec0[i] = ((1.0e-01f * input1[i])

+ (0.9f * fRec0[i -1]));

}

for (int i=0; i<4; i++)

fRec0_perm[i]= fRec0_tmp[count+i];

fGraph.ActivateOneOutputTask(

taskqueue , 4, tasknum);

break;

}

case 3: {

for (int i=0; i<4; i++)

fRec1_tmp[i]= fRec1_perm[i];

for (int i=0; i<count; i++) {

fRec1[i] = ((1.0e-01f * input0[i])

+ (0.9f * fRec1[i -1]));

}

for (int i=0; i<4; i++)

fRec1_perm[i]= fRec1_tmp[count+i];

fGraph.ActivateOneOutputTask(

taskqueue , 4, tasknum);

break;

}

case 4: {

for (int i=0; i<count; i++) {

output0[i] = (FAUSTFLOAT)(fRec1[i]

+ fRec0[i]);

}

tasknum = LAST_TASK_INDEX;

break;

}

}

}

}

}

Listing 5: Parallel C++ code with an embedded work
stealing scheduler

As we can see from the generated code, the structure
of the DAG is hard coded in a switch statement. Each
case correspond to a task and ends with code to activate
the next task in the DAG. Two special case are also
coded, one calls the work stealing method, and the other
terminates the code.

3 Performances

To compare the performances of these various compila-
tion schemes in a realistic situation, we have modified
an existing architecture file (Alsa-GTK) to continuously
measure the duration of the compute() method (600 mea-
sures per run). We give here the results for two real-life
applications : Karplus32, a 32 strings simulator based
on the Karplus-Strong algorithm (figure 3), and Sonik
Cube (figure 4), the audio part software of an audio-
visual installation .

For every test, the generated C++ code is compiled
in 64-bits using icc 11.1.059 and the same set of opti-
mization options (-O3 -xHost -ftz -fno-alias -fp-model
fast=2). The machine used to run the tests is a VGN-
Z4 Vaio laptop, with a 2.80 GHZ Core 2 Duo P9700
processor and 4 GB of RAM. The operating system is
a 64-bits Ubuntu 9.10 Linux system with a 2.6.31-19-
generic kernel.

Instead of time, the results of the tests are expressed
in MB/s of processed samples because memory band-
width is a strong limiting factor for today’s processors
(an audio application can never go faster than the mem-
ory bandwidth). Moreover it facilitates comparisons be-
tween applications, independently of their number of in-
put/output channels.

As we can see, in both cases the parallelization in-
troduces a real gain of performances. The speedup for
Karplus32 was x2.1 for OpenMP and x2.08 for the WS
scheduler. For Sonik Cube the speedup was of x1.66 for
OpenMP and x1.79 for the WS scheduler.

It is obviously not always the case. Simple appli-
cations, with limited demands in terms of computing
power, tend to perform usually better in scalar mode.
More demanding applications usually benefit from par-
allelization.

The efficiency of OpenMP and WS scheduler are
quite comparable, with an advantage to WS scheduler

1 2 3 4

0

20

40

60

80

100

120

Karplus32

Scalar
Vector
OpenMP
Scheduler

Run

T
ro

ug
h

pu
t

(M
B

/s
)

Figure 3: Compared performances of the 4 compilation
schemes on karplus32.dsp

1 2 3 4

0

10

20

30

40

50

60

70

80

90

Sonik Cube

Scalar
Vector
OpenMP
Scheduler

Run

T
hr

ou
gh

pu
t

(M
B

/s
)

Figure 4: Compared performances of the 4 compilation
schemes on Sonik Cube

with complex applications and more CPUs. Please note
that not all implementations of OpenMP are equivalent.
Unfortunately the GCC 4.4.1 version is still unusable for
real time audio application. In this case the WS sched-
uler is the only choice. The efficiency is also dependent
of the vector size used. Vector sizes of 512 or 1024 sam-
ples give usually the best results.

References

[1] Yann Orlarey, Dominique Fober, and Stephane Letz.
Syntactical and semantical aspects of faust. Soft
Computing, 8(9):623–632, 2004.

[2] Robert D. Blumofe, Christopher F. Joerg,
Bradley C. Kuszmaul, Charles E. Leiserson,
Keith H. Randall, and Yuli Zhou. Cilk: an efficient
multithreaded runtime system. In PPOPP ’95:
Proceedings of the fifth ACM SIGPLAN symposium
on Principles and practice of parallel programming,
pages 207–216, New York, NY, USA, 1995. ACM.

	Introduction
	The Faust compiler
	The math behind a Faust program
	Scalar Code generation
	Vector Code generation
	Parallel Code generation
	The OpenMP code generator
	Adding OpenMP directives
	Example of parallel OpenMP code
	The scheduler code generator
	Example of parallel scheduler code

	Performances

