
Multicore technologies in Jack and Faust

Multicore technologies in Jack and Faust

Y. Orlarey, S. Letz, D. Fober
Grame

ICMC’08, Belfast, August 2008



Multicore technologies in Jack and Faust

Jack

Outline

1 Jack

2 Faust
Overview
Parallel code generation
Performances

3 Conclusion



Multicore technologies in Jack and Faust

Jack

Jack Audio Server

Jack is a low latency audio server that runs on Linux, Macosx and
Windows



Multicore technologies in Jack and Faust

Jack

Original Jack Activation Model

The first versions of Jack were based on a sequential activation
mechanism finely tuned for mono-core machines, but unable to
take advantage of modern multi-core machines.
A “topological sort” was used to find an activation order (A, B, C,
D or B, A, C, D here)



Multicore technologies in Jack and Faust

Jack

Original Jack Activation Model

The first versions of Jack were based on a sequential activation
mechanism finely tuned for mono-core machines, but unable to
take advantage of modern multi-core machines.

A “topological sort” was used to find an activation order (A, B, C,
D or B, A, C, D here)



Multicore technologies in Jack and Faust

Jack

Original Jack Activation Model

The first versions of Jack were based on a sequential activation
mechanism finely tuned for mono-core machines, but unable to
take advantage of modern multi-core machines.
A “topological sort” was used to find an activation order (A, B, C,
D or B, A, C, D here)



Multicore technologies in Jack and Faust

Jack

New Semi-Dataflow Activation Model

In the new semi-dataflow model an application in the graph
becomes runnable when all inputs are available. Each client uses
an activation counter to count the number of input clients which it
depends on.



Multicore technologies in Jack and Faust

Jack

New Semi-Dataflow Activation Model

In the new semi-dataflow model an application in the graph
becomes runnable when all inputs are available. Each client uses
an activation counter to count the number of input clients which it
depends on.



Multicore technologies in Jack and Faust

Jack

Semi-Dataflow Activation Model in action



Multicore technologies in Jack and Faust

Jack

Various types of activation

Jack proposes various types of activations

1 Synchronous

2 Asynchronous

3 Free-wheel

4 Pipelined



Multicore technologies in Jack and Faust

Jack

Various types of activation

Jack proposes various types of activations

1 Synchronous

2 Asynchronous

3 Free-wheel

4 Pipelined



Multicore technologies in Jack and Faust

Jack

Various types of activation

Jack proposes various types of activations

1 Synchronous

2 Asynchronous

3 Free-wheel

4 Pipelined



Multicore technologies in Jack and Faust

Jack

Various types of activation

Jack proposes various types of activations

1 Synchronous

2 Asynchronous

3 Free-wheel

4 Pipelined



Multicore technologies in Jack and Faust

Jack

Various types of activation

Jack proposes various types of activations

1 Synchronous

2 Asynchronous

3 Free-wheel

4 Pipelined



Multicore technologies in Jack and Faust

Faust

Outline

1 Jack

2 Faust
Overview
Parallel code generation
Performances

3 Conclusion



Multicore technologies in Jack and Faust

Faust

Overview

Outline

1 Jack

2 Faust
Overview
Parallel code generation
Performances

3 Conclusion



Multicore technologies in Jack and Faust

Faust

Overview

FAUST : Functional AUdio Stream
A programming language for realtime signal processing

Design Principles :

1 Functional approach : A purely functional programming
language for real-time signal processing

2 Strong formal basis : A language with a well defined formal
semantic

3 Efficient compiled code : The generated C++ code should
compete with hand-written code

4 Easy deployment : Multiple native implementations from a
single Faust program



Multicore technologies in Jack and Faust

Faust

Overview

FAUST : Functional AUdio Stream
A programming language for realtime signal processing

Design Principles :

1 Functional approach : A purely functional programming
language for real-time signal processing

2 Strong formal basis : A language with a well defined formal
semantic

3 Efficient compiled code : The generated C++ code should
compete with hand-written code

4 Easy deployment : Multiple native implementations from a
single Faust program



Multicore technologies in Jack and Faust

Faust

Overview

FAUST : Functional AUdio Stream
A programming language for realtime signal processing

Design Principles :

1 Functional approach : A purely functional programming
language for real-time signal processing

2 Strong formal basis : A language with a well defined formal
semantic

3 Efficient compiled code : The generated C++ code should
compete with hand-written code

4 Easy deployment : Multiple native implementations from a
single Faust program



Multicore technologies in Jack and Faust

Faust

Overview

FAUST : Functional AUdio Stream
A programming language for realtime signal processing

Design Principles :

1 Functional approach : A purely functional programming
language for real-time signal processing

2 Strong formal basis : A language with a well defined formal
semantic

3 Efficient compiled code : The generated C++ code should
compete with hand-written code

4 Easy deployment : Multiple native implementations from a
single Faust program



Multicore technologies in Jack and Faust

Faust

Overview

FAUST : Functional AUdio Stream
A programming language for realtime signal processing

Design Principles :

1 Functional approach : A purely functional programming
language for real-time signal processing

2 Strong formal basis : A language with a well defined formal
semantic

3 Efficient compiled code : The generated C++ code should
compete with hand-written code

4 Easy deployment : Multiple native implementations from a
single Faust program



Multicore technologies in Jack and Faust

Faust

Overview

Very Simple Example

A Faust program describes a signal processor, a mathematical
function that maps input signals to output signals.

Example

process = +;



Multicore technologies in Jack and Faust

Faust

Overview

Very Simple Example

A Faust program describes a signal processor, a mathematical
function that maps input signals to output signals.

Example

process = +;



Multicore technologies in Jack and Faust

Faust

Overview

Stereo Pan

Faust syntax is based on a block diagram algebra :

(A:B), (A,B), (A<:B), (A:>B), (A~B)

Stereo Pan

p = hslider("pan", 0.5, 0, 1, 0.01);

process = <: *(sqrt(1 - p)), *(sqrt(p));



Multicore technologies in Jack and Faust

Faust

Overview

Stereo Pan

Faust syntax is based on a block diagram algebra :

(A:B), (A,B), (A<:B), (A:>B), (A~B)

Stereo Pan

p = hslider("pan", 0.5, 0, 1, 0.01);

process = <: *(sqrt(1 - p)), *(sqrt(p));



Multicore technologies in Jack and Faust

Faust

Overview

Easy Deployement
Several audio plateforms are supported

Thanks to specific architecture files the same Faust code can be
used to generate a variety of applications or plugins :

1 LADSPA

2 Max/MSP

3 Puredata

4 Q

5 SuperCollider

6 VST

7 Jack

8 Alsa

9 OSS



Multicore technologies in Jack and Faust

Faust

Overview

Easy Deployement
Several audio plateforms are supported

Thanks to specific architecture files the same Faust code can be
used to generate a variety of applications or plugins :

1 LADSPA

2 Max/MSP

3 Puredata

4 Q

5 SuperCollider

6 VST

7 Jack

8 Alsa

9 OSS



Multicore technologies in Jack and Faust

Faust

Overview

Some environments have Faust embedded

1 Snd-Rt : http://www.notam02.no/arkiv/doc/snd-rt/
(see Kjetil Matheussen poster, August 27 - session 2)

2 CLAM : http://clam.iua.upf.edu/

http://www.notam02.no/arkiv/doc/snd-rt/
http://clam.iua.upf.edu/


Multicore technologies in Jack and Faust

Faust

Overview

Some environments have Faust embedded

1 Snd-Rt : http://www.notam02.no/arkiv/doc/snd-rt/
(see Kjetil Matheussen poster, August 27 - session 2)

2 CLAM : http://clam.iua.upf.edu/

http://www.notam02.no/arkiv/doc/snd-rt/
http://clam.iua.upf.edu/


Multicore technologies in Jack and Faust

Faust

Overview

Some environments have Faust embedded

1 Snd-Rt : http://www.notam02.no/arkiv/doc/snd-rt/
(see Kjetil Matheussen poster, August 27 - session 2)

2 CLAM : http://clam.iua.upf.edu/

http://www.notam02.no/arkiv/doc/snd-rt/
http://clam.iua.upf.edu/


Multicore technologies in Jack and Faust

Faust

Overview

Efficient code generation (monoprocessor)
Comparing Marteen de Boer’s Tapiir with the equivalent Faust Tapiir



Multicore technologies in Jack and Faust

Faust

Parallel code generation

Outline

1 Jack

2 Faust
Overview
Parallel code generation
Performances

3 Conclusion



Multicore technologies in Jack and Faust

Faust

Parallel code generation

two 1-pole filters in parallel connected to an adder

As an example we will use a very simple Faust program : :

two 1-pole filters in parallel connected to an adder

filter(c) = *(1-c) : + ˜ *(c);

process = filter(0.9), filter(0.8) : +;



Multicore technologies in Jack and Faust

Faust

Parallel code generation

two 1-pole filters in parallel connected to an adder

Block-diagram representation automatically generated by Faust
compiler using -svg option



Multicore technologies in Jack and Faust

Faust

Parallel code generation

The generated C++ code

The Faust compiler can produce 3 types of C++ code :

1 scalar code (default mode) see

2 vector code (-vec option) see

3 parallel code (-omp option) see

file:///home/orlarey/work/conferences/2008-ICMC-multi-core/presentation beamer/filter-scal.cpp.pdf
file:///home/orlarey/work/conferences/2008-ICMC-multi-core/presentation beamer/filter-vec.cpp.pdf
file:///home/orlarey/work/conferences/2008-ICMC-multi-core/presentation beamer/filter-par.cpp.pdf


Multicore technologies in Jack and Faust

Faust

Performances

Outline

1 Jack

2 Faust
Overview
Parallel code generation
Performances

3 Conclusion



Multicore technologies in Jack and Faust

Faust

Performances

Freeverb



Multicore technologies in Jack and Faust

Faust

Performances

Freeverb on Vaio VGN-SZ3VP (2 cores)

Best speedup for the parallel version: 2, average: 1.62



Multicore technologies in Jack and Faust

Faust

Performances

Karplus 32

32 sligtly detuned Karplus-strong strings mixed on a stereo bus.



Multicore technologies in Jack and Faust

Faust

Performances

Karplus 32 on Vaio VGN-SZ3VP (2 cores)

Best speedup for the parallel version: 1.59, average: 1.37



Multicore technologies in Jack and Faust

Faust

Performances

Wave Field Synthesis

Simple 8 channels Wave Field Synthesis.



Multicore technologies in Jack and Faust

Faust

Performances

Wave Field Synthesis on Vaio VGN-SZ3VP (2 cores)

Best speedup for the parallel version: 1.55, average: 1.17



Multicore technologies in Jack and Faust

Faust

Performances

Sonik Cube

Sound and Visual Installation (Trafik/GRAME, 2006) :
3mx3mx3m cube reacting to sounds in an audio feedback space



Multicore technologies in Jack and Faust

Faust

Performances

Ethersonik

Toplevel block-diagram of Ethersonik, the audio software of Sonik
Cube



Multicore technologies in Jack and Faust

Faust

Performances

Ethersonik

Voice block-diagram



Multicore technologies in Jack and Faust

Faust

Performances

Ethersonik

Ethersonik source code

source code



Multicore technologies in Jack and Faust

Faust

Performances

Ethersonik on Vaio VGN-SZ3VP (2 cores)

Best speedup for the parallel version: 1.94, average: 1.79



Multicore technologies in Jack and Faust

Faust

Performances

Ethersonik on Macpro (8 cores)

Best speedup (cores: 5, vectors: 1024): 3,09, average: 2.88



Multicore technologies in Jack and Faust

Conclusion

Outline

1 Jack

2 Faust
Overview
Parallel code generation
Performances

3 Conclusion



Multicore technologies in Jack and Faust

Conclusion

To Sum Up

1 There is a lot of task + data parallellisms to exploit in audio
applications

2 Signal languages with a simple and well defined formal
semantic are easy to parallelise. It’s the way to go.

3 OpenMP is a simple and effective solution for multicore
machines

4 But efficient parallelisation is not that easy to achieve

5 Memory bandwith is a major limitation in SMP machine



Multicore technologies in Jack and Faust

Conclusion

To Sum Up

1 There is a lot of task + data parallellisms to exploit in audio
applications

2 Signal languages with a simple and well defined formal
semantic are easy to parallelise. It’s the way to go.

3 OpenMP is a simple and effective solution for multicore
machines

4 But efficient parallelisation is not that easy to achieve

5 Memory bandwith is a major limitation in SMP machine



Multicore technologies in Jack and Faust

Conclusion

To Sum Up

1 There is a lot of task + data parallellisms to exploit in audio
applications

2 Signal languages with a simple and well defined formal
semantic are easy to parallelise. It’s the way to go.

3 OpenMP is a simple and effective solution for multicore
machines

4 But efficient parallelisation is not that easy to achieve

5 Memory bandwith is a major limitation in SMP machine



Multicore technologies in Jack and Faust

Conclusion

To Sum Up

1 There is a lot of task + data parallellisms to exploit in audio
applications

2 Signal languages with a simple and well defined formal
semantic are easy to parallelise. It’s the way to go.

3 OpenMP is a simple and effective solution for multicore
machines

4 But efficient parallelisation is not that easy to achieve

5 Memory bandwith is a major limitation in SMP machine



Multicore technologies in Jack and Faust

Conclusion

To Sum Up

1 There is a lot of task + data parallellisms to exploit in audio
applications

2 Signal languages with a simple and well defined formal
semantic are easy to parallelise. It’s the way to go.

3 OpenMP is a simple and effective solution for multicore
machines

4 But efficient parallelisation is not that easy to achieve

5 Memory bandwith is a major limitation in SMP machine



Multicore technologies in Jack and Faust

Conclusion

To Sum Up

1 There is a lot of task + data parallellisms to exploit in audio
applications

2 Signal languages with a simple and well defined formal
semantic are easy to parallelise. It’s the way to go.

3 OpenMP is a simple and effective solution for multicore
machines

4 But efficient parallelisation is not that easy to achieve

5 Memory bandwith is a major limitation in SMP machine



Multicore technologies in Jack and Faust

Conclusion

Ressources

1 Jack http://jackaudio.org

2 Jackdmp http://www.grame.fr/~letz/jackdmp.html

3 Faust http://faust.grame.fr

4 OpenMP http://openmp.org/wp/

5 Snd-Rt http://www.notam02.no/arkiv/doc/snd-rt/

6 CLAM http://clam.iua.upf.edu/

http://jackaudio.org
http://www.grame.fr/~letz/jackdmp.html
http://faust.grame.fr
http://openmp.org/wp/
http://www.notam02.no/arkiv/doc/snd-rt/
http://clam.iua.upf.edu/

	Jack
	Faust
	Overview
	Parallel code generation
	Performances

	Conclusion

