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Jack Audio Server

Jack is a low latency audio server that runs on Linux, Macosx and
Windows
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Original Jack Activation Model

The first versions of Jack were based on a sequential activation
mechanism finely tuned for mono-core machines, but unable to
take advantage of modern multi-core machines.
A “topological sort” was used to find an activation order (A, B, C,
D or B, A, C, D here)
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New Semi-Dataflow Activation Model

In the new semi-dataflow model an application in the graph
becomes runnable when all inputs are available. Each client uses
an activation counter to count the number of input clients which it
depends on.
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Semi-Dataflow Activation Model in action
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Jack proposes various types of activations

1 Synchronous

2 Asynchronous

3 Free-wheel

4 Pipelined
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Overview

FAUST : Functional AUdio Stream
A programming language for realtime signal processing

Design Principles :

1 Functional approach : A purely functional programming
language for real-time signal processing

2 Strong formal basis : A language with a well defined formal
semantic

3 Efficient compiled code : The generated C++ code should
compete with hand-written code

4 Easy deployment : Multiple native implementations from a
single Faust program
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Overview

Very Simple Example

A Faust program describes a signal processor, a mathematical
function that maps input signals to output signals.

Example

process = +;
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Overview

Stereo Pan

Faust syntax is based on a block diagram algebra :

(A:B), (A,B), (A<:B), (A:>B), (A~B)

Stereo Pan

p = hslider("pan", 0.5, 0, 1, 0.01);

process = <: *(sqrt(1 - p)), *(sqrt(p));



Multicore technologies in Jack and Faust

Faust

Overview

Stereo Pan

Faust syntax is based on a block diagram algebra :

(A:B), (A,B), (A<:B), (A:>B), (A~B)

Stereo Pan

p = hslider("pan", 0.5, 0, 1, 0.01);

process = <: *(sqrt(1 - p)), *(sqrt(p));



Multicore technologies in Jack and Faust

Faust

Overview

Easy Deployement
Several audio plateforms are supported

Thanks to specific architecture files the same Faust code can be
used to generate a variety of applications or plugins :

1 LADSPA

2 Max/MSP

3 Puredata

4 Q

5 SuperCollider

6 VST

7 Jack

8 Alsa

9 OSS
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Overview

Some environments have Faust embedded

1 Snd-Rt : http://www.notam02.no/arkiv/doc/snd-rt/
(see Kjetil Matheussen poster, August 27 - session 2)

2 CLAM : http://clam.iua.upf.edu/

http://www.notam02.no/arkiv/doc/snd-rt/
http://clam.iua.upf.edu/
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Overview

Efficient code generation (monoprocessor)
Comparing Marteen de Boer’s Tapiir with the equivalent Faust Tapiir



Multicore technologies in Jack and Faust

Faust

Parallel code generation

Outline

1 Jack

2 Faust
Overview
Parallel code generation
Performances

3 Conclusion



Multicore technologies in Jack and Faust

Faust

Parallel code generation

two 1-pole filters in parallel connected to an adder

As an example we will use a very simple Faust program : :

two 1-pole filters in parallel connected to an adder

filter(c) = *(1-c) : + ˜ *(c);

process = filter(0.9), filter(0.8) : +;
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Faust

Parallel code generation

two 1-pole filters in parallel connected to an adder

Block-diagram representation automatically generated by Faust
compiler using -svg option
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Faust

Parallel code generation

The generated C++ code

The Faust compiler can produce 3 types of C++ code :

1 scalar code (default mode) see

2 vector code (-vec option) see

3 parallel code (-omp option) see

file:///home/orlarey/work/conferences/2008-ICMC-multi-core/presentation beamer/filter-scal.cpp.pdf
file:///home/orlarey/work/conferences/2008-ICMC-multi-core/presentation beamer/filter-vec.cpp.pdf
file:///home/orlarey/work/conferences/2008-ICMC-multi-core/presentation beamer/filter-par.cpp.pdf
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Freeverb
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Performances

Freeverb on Vaio VGN-SZ3VP (2 cores)

Best speedup for the parallel version: 2, average: 1.62
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Faust

Performances

Karplus 32

32 sligtly detuned Karplus-strong strings mixed on a stereo bus.
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Karplus 32 on Vaio VGN-SZ3VP (2 cores)

Best speedup for the parallel version: 1.59, average: 1.37
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Faust

Performances

Wave Field Synthesis

Simple 8 channels Wave Field Synthesis.
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Faust

Performances

Wave Field Synthesis on Vaio VGN-SZ3VP (2 cores)

Best speedup for the parallel version: 1.55, average: 1.17
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Faust

Performances

Sonik Cube

Sound and Visual Installation (Trafik/GRAME, 2006) :
3mx3mx3m cube reacting to sounds in an audio feedback space
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Faust

Performances

Ethersonik

Toplevel block-diagram of Ethersonik, the audio software of Sonik
Cube
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Faust

Performances

Ethersonik

Voice block-diagram
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Faust

Performances

Ethersonik

Ethersonik source code

source code
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Faust

Performances

Ethersonik on Vaio VGN-SZ3VP (2 cores)

Best speedup for the parallel version: 1.94, average: 1.79
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Faust

Performances

Ethersonik on Macpro (8 cores)

Best speedup (cores: 5, vectors: 1024): 3,09, average: 2.88
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To Sum Up

1 There is a lot of task + data parallellisms to exploit in audio
applications

2 Signal languages with a simple and well defined formal
semantic are easy to parallelise. It’s the way to go.

3 OpenMP is a simple and effective solution for multicore
machines

4 But efficient parallelisation is not that easy to achieve

5 Memory bandwith is a major limitation in SMP machine
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Ressources

1 Jack http://jackaudio.org

2 Jackdmp http://www.grame.fr/~letz/jackdmp.html

3 Faust http://faust.grame.fr

4 OpenMP http://openmp.org/wp/

5 Snd-Rt http://www.notam02.no/arkiv/doc/snd-rt/

6 CLAM http://clam.iua.upf.edu/

http://jackaudio.org
http://www.grame.fr/~letz/jackdmp.html
http://faust.grame.fr
http://openmp.org/wp/
http://www.notam02.no/arkiv/doc/snd-rt/
http://clam.iua.upf.edu/
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