
The Guido Engine
A toolbox for music scores rendering

C. Daudin, D. Fober, S. Letz and Y. Orlarey
Grame

Centre national de cration musicale
Lyon, France

{daudin, fober, letz, orlarey}@grame.fr

Abstract

The Guido Music Notation format (GMN) is a gen-
eral purpose formal language for representing score
level music in a platform independent plain text and
human readable way. Based on this music repre-
sentation format, the GuidoLib provides a generic,
portable library and API for the graphical render-
ing of musical scores. This paper gives an intro-
duction to the music notation format and to the
Guido graphic score rendering engine. An exam-
ple of application, the GuidoSceneComposer, is next
presented.

Keywords

Guido, Music notation, score layout.

1 Introduction

Computer music has started to investigate mu-
sic score rendering very early [1][2][3]. Music
notation codes such as DARMS [4], SCORE [5]
or MuseData [6] have been designed to address
representational issues and gave birth to asso-
ciated programs (such as the SCORE Notation
Program, widely used in engraving during the
1980s and 1990s) and a long history of derived
or alternate formats.

Now, commercial music publishing software
exist for more a decade and actually provide so-
phisticated but complex solutions for music en-
graving. Along these closed solutions, the tool-
box approach has been investigated very early
[7]. However, very few systems have reached
maturity: the Common Music Notation system
[8] could be considered as the best achievement.
More recently, the Expressive Notation Pack-
age (ENP) [9] introduced another promising ap-
proach; both systems are Lisp based environ-
ments.

Another solution consists in designing com-
pilers for producing music sheets from a tex-
tual music description. MusiXTEX is among
these tools: it is a set of TEX macros to typeset

music notation. Since MusiXTEX is powerful
but hard to learn, preprocessors such as PMX
and M-Tx have been designed to facilitate mu-
sic input and layout. A more recent initiative is
Lilypond [10], an open source software partially
implemented in the language Scheme, its input
music representation format is simple and intu-
itive, it includes automatic layout capabilities.
Both systems produce PostScript, EPS or PDF
files.

Based the Guido Music Notation format,
the GuidoLib project is a open source, cross-
platform C/C++ library that provides score
layout and rendering capabilities to its client ap-
plications. The music notation format is very
close to the Lylipond format. The GuidoLib
mainly differs from the compilers approach in
that it allows to embed music score rendering
capabilities into standalone applications and to
create scores dynamically.

This paper introduces first the Guido Mu-
sic Notation format, next the Guido Engine
and the Guido library API are presented. The
last section presents the Qt support for Guido,
along with a concrete example of Guido-Qt ap-
plication, the GuidoSceneComposer.

2 The Guido Music Notation format

The Guido Music Notation format (GMN) [11]
[12] has been designed by H. Hoos and K. Hamel
more than ten years ago. It is a general pur-
pose formal language for representing score level
music in a platform independent plain text and
human readable way. It is based on a concep-
tually simple but powerful formalism: its de-
sign concentrates on general musical concepts
(as opposed to graphical features). A key fea-
ture of the Guido design is adequacy which
means that simple musical concepts should be
represented in a simple way and only complex
notions should require complex representations.

2.1 Basic concepts
Basic Guido notation covers the representation
of notes, rests, accidentals, single and multi-
voiced music and the most common concepts
from conventional music notation such as clefs,
meter, key, slurs, ties, beaming, stem directions,
etc. Notes are specified by their name (a b c
d e f g h), optional accidentals (’#’ and ’&’
for sharp and flat), an optional octave number
and an optional duration.
Duration is specified in one of the forms:

’*’enum’/’denom dotting

’*’enum dotting

’/’denom dotting

where enum and denom are positive integers
and dotting is either empty, ’.’, or ’..’, with the
same semantic than the music notation. When
enum or denom is omitted, it is assumed to be
1. The duration represents a whole note frac-
tional.

When omitted, optional note description
parts are assumed to be equal to the previous
specification before in the current sequence.

Chords are described using comma separated
notes enclosed in brackets e.g {c, e, g}

2.2 Guido tags
Tags are used to represent additional musical
information, such as slurs, clefs, keys, etc. A
basic tag has one of the forms:

\tagname

\tagname<param-list>

where param-list is a list of string or numer-
ical arguments, separated by commas (’,’). In
addition, a tag may have a time range and be
applied to a series of notes (like slurs, ties etc.);
the corresponding form is:

\tagname(note-series)

\tagname<param-list>(note-series)

The following GMN code illustrates the con-
cision of the notation; figure 1 represents the
corresponding Guido engine output.

[\meter<"4/4"> \key<-2> c d e& f/8 g]

& bb 44 _XÛxxxxxx XÛxxxxxx XÛxxxxxx XÛxxxxxx XÛxxxxxx \
Figure 1: A simple GMN example

2.3 Notes sequences and segments
A note sequence is of the form [tagged-notes]
where tagged-notes is a series of notes, tags,
and tagged ranges separated by spaces. Note
sequences represent single-voiced scores. Note
segments represent multi-voiced scores; they are
denoted by {seq-list} where seq-list is a
list of note sequences separated by commas as
shown by the example below:

{

[\staff<1> \stemsUp \meter<"2/4">

\beam(g2/32 e/16 c*3/32) c/8

\beam(a1/16 c2 f)

\beam(g/32 d/16 h1*3/32) d2/8

\beam(h1/16 d2 g)],

[\staff<1>\stemsDown g1/8 e

\beam(g/16 d f a) a/8 e \beam(a/16 e g h)],

[\staff<2> \stemsUp \meter<"2/4"> a0 f h c1],

[\staff<2>\stemsDown f0 d g a]

}

The corresponding Guido engine output is
given by figure 2.

& 24 X!ÛÛÛÛÛÛÛX"ÚÚÚÚÚÚ
X!ÛÛÛÛÛÛÛÛ X!ÛÛÛÛÛÛÛÛ
ÛÛ
.X"ÚÚÚÚÚÚ
X!ÛÛÛÛÛÛjX"ÚÚÚÚÚÚÚÚÚ
X!ÛÛÛÛÛÛÛÛ
ÛÛ
X"ÚÚÚÚÚÚ
X!ÛÛÛÛÛÛÛÛX"ÚÚÚÚÚÚÚ
X!ÛÛÛÛÛÛX"ÚÚÚÚÚÚÚÚÚ ‹

? 24 X!ÛÛÛÛÛÛX"ÚÚÚÚÚÚ X!ÛÛÛÛÛÛX"ÚÚÚÚÚÚ ‹

X!ÛÛÛÛÛÛÛX"ÚÚÚÚÚÚÚ
X!ÛÛÛÛÛÛÛÛ
Û
X!ÛÛÛÛÛÛÛÛ
ÛÛÛ
.X"ÚÚÚÚÚÚ
X!ÛÛÛÛÛÛjX"ÚÚÚÚÚÚÚÚÚ
X!ÛÛÛÛÛÛÛÛ
ÛÛ
X"ÚÚÚÚÚÚ
X!ÛÛÛÛÛÛÛÛX"ÚÚÚÚÚÚÚ
X!ÛÛÛÛÛÛX"ÚÚÚÚÚÚÚÚÚ \\

X!ÛÛÛÛÛÛX"ÚÚÚÚÚÚ _X!ÛÛÛÛÛÛX"ÚÚÚÚÚÚ \\
Figure 2: A multi-voices example

Additionally, the advanced Guido specifica-
tion (not covered by this paper) provides exact
formatting of the score.

3 The Guido Engine

Based on the Guido Music Notation format
and initially designed by Kai Renz, the Guido
Engine provides graphical rendering of musical
scores, including automatic layout capabilities.
At Grame’s initiative, the engine has been re-
shaped under the form of a portable library and
became an open source project in 2002, cov-
ered by the GNU LGPL license and hosted on
SourceForge. Since 2002, the Guido engine has
been maintained and extended by Grame.

The Guido Engine operates on a memory
representation of the GMN format: the Guido
Abstract Representation (GAR). This represen-
tation is transformed step by step to produce
graphical score pages. Two kinds of processing
are first applied to the GAR:

• GAR to GAR transformations which repre-
sents a logical layout transformation: part
of the layout (such as beaming for example)
may be computed from the GAR as well as
expressed in GAR,

• the GAR is converted into a Guido Seman-
tic Normal Form (GSNF). The GSNF is a

canonical form such that different semanti-
cally equivalent expressions have the same
GSNF.

This GSNF is finally converted into a Guido
Graphic Representation (GGR) that contains
the necessary layout information and is directly
used to draw the music score. This final step
notably includes spacing and page breaking al-
gorithms [13].

Note that although the GMN format allows
for acurate music formatting using advanced
Guido (see figure 3), the Guido Engine pro-
vides powerful automatic layout capabilities.

4 The Guido Library

The Guido Library is implemented is in C++
but the services of Guido Engine are available
using a C API.

4.1 Score layout

The library provides functions to parse a GMN
file and to create the corresponding GAR and
GGR. GAR and GGR are referenced by opaque
handles which are used as arguments of any
function that operates on a score. For exam-
ple: GuidoParse (const char * filename) pro-
vides conversion of a GMN file into a GGR han-
dle returned as the function result. This handle
may be next used to draw the score using the
GuidoOnDraw function.

A typical code to draw a score from its GMN
description is given below (see section 4.6 for
VGDevice information):

void DrawGMNFile (char* filename, VGDevice* device)

{

// data structure for engine initialization

// uses fonts "guido2" and "times"

GuidoInitDesc gd = { device, 0, "guido2", "times" };

// Initialise the Guido Engine first

GuidoInit (&gd);

// declare a data structure for drawing

GuidoOnDrawDesc desc;

// and parse the GMN file to get a GGR handle

// directly stored in the drawing struct

desc.handle = GuidoParse (filename);

// next setup the drawing parameters

// (see the documentation for more details)

desc.hdc = device; // the output device

desc.page = 1; // the page to draw

desc.updateRegion.erase = true;

desc.scrollx = desc.scrolly = 0;

desc.zoom = 1; // no zoom

desc.sizex = desc.sizey = 0;

// and finally draws the score

GuidoOnDraw (&desc);

}

4.2 Score pages access
The result of the score layout is a set of pages
which size may be dynamically changed accord-
ing to an application or a user needs. The
library provides the necessary to change the
page size, to query a score pages count, or the
page number corresponding to a given music
date. Note that only one page is drawn by the
GuidoOnDraw function.

4.3 Engine settings
Score layout algorithms are controlled by a set
of parameters which are global to the Guido
engine. The library provides an API to query
and modify these parameters. It includes op-
timal page fill control, springs and space force
control, systems distance and systems distribu-
tion.

4.4 The Guido Factory
The Guido Engine may be feeded with com-
puter generated music using the Guido Fac-
tory. The Guido Factory API provides a set of
functions to create a GAR from scratch and to
convert it into a GGR. The Guido Factory is a
state machine that operates on implicit current
elements: for example, once you open a voice
(GuidoFactoryOpenVoice()), it becomes the cur-
rent voice and all subsequent created events are
implicitly added to this current voice.

The Guido Factory state includes the current
score, voice, chord, note (or rest) and tag. Some
elements of the factory state reflects the Guido
formal specification; unless otherwise specified,
new notes will implicitly carry the current du-
ration and octave.

A music score dynamic construction is very
close to the textual Guido description: the
Factory API handles GAR objects that have a
one to one relationship with the notation for-
mat. Once the score has been dynamically built,
a call to GuidoFactoryCloseMusic() returns a
Guido handle to a GAR, directly usable with
GuidoFactoryMakeGR(), which returns a Guido
handle to a GGR, directly usable with the main
services of the library. Logical layout is per-
formed before returning the GAR handle and
graphical layout is performed before returning
the GGR handle.

4.5 Graphic Mappings
Along with the GGR, the Guido Engine main-
tains a tree of graphical elements for each page
of the score, as illustrated by figure 4. Each ele-
ment has a bounding box and a date. Positions

FUGA I J.S.Bach BWV 846

& c

(c) Kai Renz, musical data taken from MuseData database and automatically converted to GUIDO

a _XÚhhhhhh XÚhhhhhh XÚhhhhhh XÚhhhhhh . XÚhhhhhhh XÚhhhhhhh XÚhhhhhh
XÚhhhhhhhh ee

? c eee
XÚhhhhhh XÚhhhhhhhh XÚhhhhhh XÚhhhhhhh XÚhhhhhh XÚhhhhhh

aXÚhhhhhh XÚhhhhhhh XÛx
xxxxxXÚhhhhhh XÚhhhhhh XÛ

xxxxxx_XÚhhhhhh XÚhhhhhhh
XÛxxxxxx_XÚhhhhhh _XÚhhhhhh ee

eee

XÛxxxxxx .__XÚhhhhhh
XÚhhhhhhhhhh
XÛxxxx
xx XÛxxxxxxx XÛxxxxxxxxXÚhhhhhh

XÛxxxxxx XÛxxxxxxxxXÚhhhhhhh
XÛxxxxxxXÚhhhhhh XÚhhhhhh

XÛxxxxxxxXÚhhhhhhh
XÛxxxxxx XÛxxxxxxXÚhhhhhh

XÛxxxxxxx ee
eee

eeeee
eeeee

eeeee
eeeee

eeeee
eeeee

&

?

XÛxxxxxxXÚhhhhhh XÛxxxxxxxx XÛxxxxxxxXÚhhhhhh XÛxxxxxx XÛxxxxxxXÚhhhhhh XÛxxxxxxx XÛxxxxxxXÚhhhhhh
XÛxxxxxx XÛxxxxxx_XÚhhhhhhJ

XÛxxxxxxx XÛxxxxxxa XÛxxxxxx# XÛxxxxxxa XÛxxxxxxxxx
x
XÚhhhhhhJ ee

a XÛxxxxxx XÛxxxxxx XÛxxxxxx _XÛxxxxxx . _XÛxxxxxx _XÛxxxxxxx XÛxxxxxxxx __XÛxxxxxx
eee

XÛxxxxxxXÚhhhhhh XÛxxxxxxxXÚhhhhhh XÚhhhhhh
XÛxxxxxxXÚhhhhhh XÛxxxxxx XÛxxxxxx XÛxxxxxxx XÛxxxxxx .XÚhhhhhh XÚhhhhhh XÚhhhhhh XÛxx

xxxx XÛxxxxxxXÚhhhhhh XÛxxxxxxx XÛxxxxxx XÛxxxxxx ee
XÛxxxxxxxx _XÛxxxxxx _XÛxxxxxxx __XÛxxxxxx _XÛxxxxxx _XÛxxxxxxx XÛxxxxxxxa _XÛxxxxxxXÚhhhhhh

_XÛxxxxxxXÚhhhhhh
XÛxxxxxxxbXÚhhhhhh eee

eeeeee

eeeeee

eeeeee

eeeeee
Figure 3: A complex layout example

of the elements are stored as pixel coordinates.
Top left corner of the score is at position (0, 0).

& 44 _X!ÛÛÛÛÛÛ X!ÛÛÛÛÛÛ E!ÛÛÛÛÛÛ ‹ _X!ÛÛÛÛÛÛ X!ÛÛÛÛÛÛ E!ÛÛÛÛÛÛ ‹ X!ÛÛÛÛÛÛ X!ÛÛÛÛÛÛ X!ÛÛÛÛÛÛ X!ÛÛÛÛÛÛ ‹ X!ÛÛÛÛÛÛ X!ÛÛÛÛÛÛ E!ÛÛÛÛÛÛ ‹X
X!ÛÛÛÛÛ

 = 120

 = 120 = 120

& _X!ÛÛÛÛÛÛ _X!ÛÛÛÛÛÛ E!ÛÛÛÛÛÛ ‹ _X!ÛÛÛÛÛÛ _X!ÛÛÛÛÛÛ E!ÛÛÛÛÛÛ ‹ X!ÛÛÛÛÛÛ X!ÛÛÛÛÛÛ X!ÛÛÛÛÛÛ X!ÛÛÛÛÛÛ ‹ X!ÛÛÛÛÛÛ X!ÛÛÛÛÛÛ _E!ÛÛÛÛÛÛ \

Figure 4: Bounding rects of a score elements

The Guido library provides a specific API to
query the score map and to retrieve elements by
type, position and date.

4.6 The Virtual Graphic System
The virtual graphic system is intended as an
abstract layer covering platform dependencies
at graphic level. It represents a set of abstract
classes adressing the basic needs of an applica-
tion: printing text, drawing on the screen or
offscreen, etc. The set of abstract classes in-
cludes:

• a VGDevice class: specialized on drawing
onscreen or offscreen

• a VGFont class: to cover fonts management

• a VGSystem class: to cover allocation of
specific VGDevice and VGFont objects.

This set of classes is implemented for different
target platforms: support is provided for GDI

(Windows), Quartz (Mac OS X), GTK (GNU
Linux), OpenGL and more recently for Qt.

5 Guido Qt support

Qt is a cross-platform application development
framework [14], widely used for the development
of GUI programs1.

5.1 GuidoQt classes
A set of classes has been developed to use the
Guido library with Qt; they are organized in 3
layers (figure 5):

• low level : GDeviceQt, GFontQt & GSys-
temQt: Qt implementation of the Virtual
Graphic System

• middle level : QGuidoPainter: a class that
uses GDeviceQt, GFontQt & GSystemQt,
and offers a higher-level interface

• high level : ready-to-use Qt classes that
uses the QGuidoPainter to parse and draw
Guido scores:

– QGuidoWidget, a QWidget

– QGuidoSPageItem & QGuidoM-
PageItem, two QGraphicsItem
displaying, respectively, one score’s
page at a time, and all the pages

– Guido2Image, to export Guido scores
to various image formats

1see: http://www.qtsoftware.com

Qt Library

High level

Mid level

Low level

QGuidoItem

QGuidoPainter

QGraphicsItem

QGuidoMPageItem QGuidoSPageItem QGuidoWidget

QWidget

Guido2Image

GSystemQt GDeviceQt GFontQt

Figure 5: GuidoQt class diagram

Here is a short example using the
QGuidoPainter that shows how to export
a Guido score to an image:
#include <QApplication>

#include <QPainter>

#include <QImage>

#include "QGuidoPainter.h"

int main(int argc , char* argv[])

{

QApplication app(argc , argv);

//Guido Engine initialization

QGuidoPainter::startGuidoEngine();

//Create a QGuidoPainter...

QGuidoPainter* p = QGuidoPainter::create();

//...and give it some Guido Music Notation

p->setGMNCode("[c/8 d e g e d c]");

//Get the size of the score’s first and only page

int pageIndex = 1;

QSizeF s = p->pageSizeMM(pageIndex);

//Create a blank image, using the size of the score

QImage image(s.toSize()*10 , QImage::Format_ARGB32);

image.fill(QColor(Qt::white).rgb());

//Draw the score with the QGuidoPainter, via QPainter.

QPainter painter(&image);

p->draw(&painter , pageIndex , image.rect());

QGuidoPainter::destroyGuidoPainter(p);

//Destroy the Guido Engine resources

QGuidoPainter::stopGuidoEngine();

image.save("myScore.png");

return 0;

}

And here is another example showing how to
display a Guido Score using a QGuidoWidget:

#include <QApplication>

#include "QGuidoWidget.h"

#include "QGuidoPainter.h"

int main(int argc, char *argv[])

{

QApplication app(argc, argv);

// Guido Engine initialization

QGuidoPainter::startGuidoEngine();

// Create a QGuidoWidget...

QGuidoWidget w;

//...and give it some Guido Music Notation

w.setGMNCode("[e d c]");

w.show();

// That’s it !

int result = app.exec();

// Destroy the Guido Engine resources

QGuidoPainter::stopGuidoEngine();

return result;

}

5.2 The Guido Scene Composer
The GuidoSceneComposer is a graphic IDE for
Guido, allowing to manipulate Guido scores in
a graphic scene.
5.2.1 A Guido Music Notation learning

tool
The GuidoSceneComposer is an effective envi-
ronment to learn the GMN:

• when typing GMN, the corresponding score
is instantly updated, making it very simple
to try different notations;

• a help palette (figure 6) lists a large as-
sortment of Guido expressions and tags,

so that no external documentation is nec-
essary;

• the GMN text editor uses a synthax high-
lighter, for a clearer GMN reading;

• import MusicXML and MuseData (limited
support) scores;

• export the Guido scores to a pdf or an im-
age.

Figure 6: The Guido Help palette

5.2.2 A score graphic composer
The GuidoSceneComposer allows to you to
compose graphic scenes with different scores:

• move, resize, copy & paste the scores, to
create a graphically complex musical scene,

• import various formats of pictures to enrich
the scene,

• add textual annotations,

• export the scene to an image or a pdf.

Figure 7: The Guido Scene Composer

6 Conclusions

Based on the Guido Music Notation for-
mat, the GuidoLib is a unique open source,
platform-independant library, for embedding
score rendering into a standalone application.
The recent support of the widely-used cross-
platform Qt library makes it even more accessi-
ble to software developers.

In the future, we plan to extend the graphical
possibilities of the GuidoSceneComposer giv-
ing to users more drawing tools; it would then
become an interesting application to create ex-
tended modern music scores. Support of im-
port/export in other common music score for-
mats is also among our concerns.

Finally, we plan to add score composition fea-
tures, like putting scores in sequence or in par-
allel, cutting the head, the tail, the top or the
bottom voices of a score, transposition, or du-
ration change, using an homogeneous approach,
where scores are both the target and the argu-
ment of the operations.

The Guido library is available on Sourceforge
at http://guidolib.sourceforge.net

References

[1] David A. Gomberg. A Computer-Oriented
System for Music Printing. In Computers
and the Humanities, volume 11, pages 63–
80. Pergamon Press, 1977.

[2] Donald Alvin Bird. Music Notation by
Computer. PhD thesis, Indiana University,
1984.

[3] John S. Gourlay, A. Parrish, D. Roush,
F. Sola, and Y. Tien. Computer For-
matting of Music. Technical report OSU-
CISRC-2/87-TR3, Department of Com-
puter and Information Science, The Ohio
State University, 1987.

[4] E. Selfridge-Field. DARMS, Its Dialiects,
and Its Uses. In Beyond MIDI, The hand-
book of Musical Codes., pages 163–174.
MIT Press, 1997.

[5] Smith Leland. SCORE. In Beyond MIDI,
The handbook of Musical Codes., pages
252–280. MIT Press, 1997.

[6] Walter B. Hewlett. MuseData: Multipur-
pose Representation. In Selfridge-Field E.,
editor, Beyond MIDI, The handbook of Mu-
sical Codes., pages 402–447. MIT Press,
1997.

[7] Assayag G. and D. Timis. A ToolBox for
Music Notation. In Proceedings of the In-
ternational Computer Music Conference,
pages 173–178, 1986.

[8] Bill Schottstaedt. Common Music Nota-
tion. In Selfridge-Field E., editor, Beyond
MIDI, The handbook of Musical Codes.,
pages 217–222. MIT Press, 1997.

[9] Mika Kuuskankare and Michael Laurson.
ENP - Music Notation Library based on
Common Lisp and CLOS. In Proceedings
of the International Computer Music Con-
ference, pages 131–134. ICMA, 2001.

[10] Han-Wen Nienhuys and Jan Nieuwen-
huizen. LilyPond, a system for automated
music engraving. In Proceedings of the XIV
Colloquium on Musical Informatics (XIV
CIM 2003), May 2003.

[11] Hoos H., Hamel K. A., Renz K., and Kilian
J. The GUIDO Music Notation Format - a
Novel Approach for Adequately Represent-
ing Score-level Music. In Proceedings of the
International Computer Music Conference,
pages 451–454. ICMA, 1998.

[12] H. H. Hoos and K. A. Hamel. The GUIDO
Music Notation Format Specification - ver-
sion 1.0, part 1: Basic GUIDO. Techni-
cal report TI 20/97, Technische Universitat
Darmstadt, 1997.

[13] Kai Renz. Algorithms and Data Struc-
tures for a Music Notation System based
on GUIDO Music Notation. PhD thesis,
Technischen Universität Darmstadt, 2002.

[14] Jasmin Blanchette and Mark Summerfield.
C++ GUI Programming with Qt 4 (2nd
Edition). Prentice Hall, 2008.

